Difference between revisions of "2014 AIME II Problems/Problem 13"
(Created page with "==Solution== Let the left shoes be L1 ... L10 and the right shoes be R1 ... R10. Notice that there are 10 * 9 * 8 * ... * 1 = 10! possible pairings. To calculate the possible cas...") |
(→Solution) |
||
Line 1: | Line 1: | ||
==Solution== | ==Solution== | ||
− | Let the left shoes be L1 ... L10 and the right shoes be R1 ... R10. Notice that there are 10 * 9 * 8 * ... * 1 = 10! possible pairings. To calculate the possible cases, we split into cases. Trivially, if there is a cycle of all ten shoes (for example, L1 -> R2, L2 -> R3, ..., L10 -> R1) then there are 9 * 8 * ... * 1 = 9! working cases. Or, there will be two cycles of 5 shoes: <math>10\choose | + | Let the left shoes be L1 ... L10 and the right shoes be R1 ... R10. Notice that there are 10 * 9 * 8 * ... * 1 = 10! possible pairings. To calculate the possible cases, we split into cases. Trivially, if there is a cycle of all ten shoes (for example, L1 -> R2, L2 -> R3, ..., L10 -> R1) then there are 9 * 8 * ... * 1 = 9! working cases. Or, there will be two cycles of 5 shoes: <math>\frac{{10\choose 5}}{2}</math> * <math>{4!}^2</math>. Now, there cannot be a cycle of 6 and a cycle of 4 by the hypothesis; by similar reasoning, our two cases are the only ones that work. To compute the probability, we see that the first case yields a probability of 1/10 and the second case <math>\frac{126 * 24 * 24}{10!} = \frac{1}{50}</math>. Adding the probability gives <math>\frac{3}{25}</math>, for an answer of <math>\boxed{28}</math>. |
Revision as of 20:47, 11 April 2014
Solution
Let the left shoes be L1 ... L10 and the right shoes be R1 ... R10. Notice that there are 10 * 9 * 8 * ... * 1 = 10! possible pairings. To calculate the possible cases, we split into cases. Trivially, if there is a cycle of all ten shoes (for example, L1 -> R2, L2 -> R3, ..., L10 -> R1) then there are 9 * 8 * ... * 1 = 9! working cases. Or, there will be two cycles of 5 shoes: * . Now, there cannot be a cycle of 6 and a cycle of 4 by the hypothesis; by similar reasoning, our two cases are the only ones that work. To compute the probability, we see that the first case yields a probability of 1/10 and the second case . Adding the probability gives , for an answer of .