Difference between revisions of "2009 USAMO Problems/Problem 5"
m |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Trapezoid <math>ABCD</math>, with <math>\overline{AB}||\overline{CD}</math>, is inscribed in circle <math>\omega</math> and point <math>G</math> lies inside triangle <math>BCD</math>. Rays <math>AG</math> and <math>BG</math> meet <math>\omega</math> again at points <math>P</math> and <math>Q</math>, respectively. Let the line through <math>G</math> parallel to <math>\overline{AB}</math> | + | Trapezoid <math>ABCD</math>, with <math>\overline{AB}||\overline{CD}</math>, is inscribed in circle <math>\omega</math> and point <math>G</math> lies inside triangle <math>BCD</math>. Rays <math>AG</math> and <math>BG</math> meet <math>\omega</math> again at points <math>P</math> and <math>Q</math>, respectively. Let the line through <math>G</math> parallel to <math>\overline{AB}</math> intersect <math>\overline{BD}</math> and <math>\overline{BC}</math> at points <math>R</math> and <math>S</math>, respectively. Prove that quadrilateral <math>PQRS</math> is cyclic if and only if <math>\overline{BG}</math> bisects <math>\angle CBD</math>. |
== Solution == | == Solution == | ||
Line 40: | Line 40: | ||
\end{align*}</cmath> depending on the configuration. | \end{align*}</cmath> depending on the configuration. | ||
− | Next, we have <cmath>\measuredangle GTR=\measuredangle GBR=\frac{m\widehat{DQ}}{2}=\frac{m\widehat{QC}}{2}=\measuredangle CTQ,</cmath> iff <math>\overline{BG}</math> bisects <math>\angle CBD</math> | + | Next, we have <math>T, G, C</math> are collinear since <cmath>\measuredangle GTR=\measuredangle GBR=\frac{m\widehat{DQ}}{2}=\frac{m\widehat{QC}}{2}=\measuredangle CTQ,</cmath> iff <math>\overline{BG}</math> bisects <math>\angle CBD</math>. |
Revision as of 11:00, 23 March 2014
Problem
Trapezoid , with , is inscribed in circle and point lies inside triangle . Rays and meet again at points and , respectively. Let the line through parallel to intersect and at points and , respectively. Prove that quadrilateral is cyclic if and only if bisects .
Solution
We will use directed angles in this solution.
Note that Thus, is cyclic iff bisects since that would imply .
Also, note that is cyclic because depending on the configuration.
Next, we have are collinear since iff bisects .
Therefore,
iff bisects , as desired.
See Also
2009 USAMO (Problems • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.