Difference between revisions of "2014 AIME I Problems/Problem 15"
(→Solution) |
Katherinefok (talk | contribs) (→Solution) |
||
Line 31: | Line 31: | ||
draw(B--G); | draw(B--G); | ||
</asy> | </asy> | ||
− | + | Solution 1 | |
First we note that <math>\triangle DEF</math> is an isosceles right triangle with hypotenuse <math>\overline{DE}</math> the same as the diameter of <math>\omega</math>. We also note that <math>\triangle DGE \sim \triangle ABC</math> since <math>\angle EGD</math> is a right angle and the ratios of the sides are <math>3:4:5</math>. | First we note that <math>\triangle DEF</math> is an isosceles right triangle with hypotenuse <math>\overline{DE}</math> the same as the diameter of <math>\omega</math>. We also note that <math>\triangle DGE \sim \triangle ABC</math> since <math>\angle EGD</math> is a right angle and the ratios of the sides are <math>3:4:5</math>. | ||
Line 37: | Line 37: | ||
Lastly, we apply power of a point from points <math>A</math> and <math>C</math> with respect to <math>\omega</math> and have <math>AE \times AB=AF \times AG</math> and <math>CD \times CB=CG \times CF</math>, so we can compute that <math>EB = \frac{17}{14}</math> and <math>DB = \frac{31}{14}</math>. From the Pythagorean Theorem, we result in <math>DE = \frac{25 \sqrt{2}}{14}</math>, so <math>a+b+c=25+2+14= \boxed{041}</math> | Lastly, we apply power of a point from points <math>A</math> and <math>C</math> with respect to <math>\omega</math> and have <math>AE \times AB=AF \times AG</math> and <math>CD \times CB=CG \times CF</math>, so we can compute that <math>EB = \frac{17}{14}</math> and <math>DB = \frac{31}{14}</math>. From the Pythagorean Theorem, we result in <math>DE = \frac{25 \sqrt{2}}{14}</math>, so <math>a+b+c=25+2+14= \boxed{041}</math> | ||
+ | |||
+ | Solution 2 | ||
+ | From solution 1, we have CG = 5/2 and <math>\angle EFG</math> = <math>\angle EDG</math> =<math>\angle EAG</math> . Therefore, <math>\triangle EAF</math> is isosceles with EF = EA. | ||
+ | Let EF = x, then DE = \sqrt{2}x. Therefore <math>EG = \frac{4 \sqrt{2}}{5}x</math>. | ||
+ | Using Cosine rule on <math>\triangle EGA</math> | ||
+ | (14x - 25)(2x + 25) = 0 and x = \frac{25}{14}. Hence, <math>DE = \frac{25 \sqrt{2}}{14}</math>, so <math>a+b+c=25+2+14= \boxed{041}</math> | ||
== See also == | == See also == | ||
{{AIME box|year=2014|n=I|num-b=14|after=Last Question}} | {{AIME box|year=2014|n=I|num-b=14|after=Last Question}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 20:19, 25 July 2015
Problem 15
In , , , and . Circle intersects at and , at and , and at and . Given that and , length , where and are relatively prime positive integers, and is a positive integer not divisible by the square of any prime. Find .
Solution
Solution 1 First we note that is an isosceles right triangle with hypotenuse the same as the diameter of . We also note that since is a right angle and the ratios of the sides are .
From congruent arc intersections, we know that , and that from similar triangles is also congruent to . Thus, is an isosceles triangle with , so is the midpoint of and . Similarly, we can find from angle chasing that . Therefore, is the angle bisector of . From the angle bisector theorem, we have , so and .
Lastly, we apply power of a point from points and with respect to and have and , so we can compute that and . From the Pythagorean Theorem, we result in , so
Solution 2 From solution 1, we have CG = 5/2 and = = . Therefore, is isosceles with EF = EA. Let EF = x, then DE = \sqrt{2}x. Therefore . Using Cosine rule on (14x - 25)(2x + 25) = 0 and x = \frac{25}{14}. Hence, , so
See also
2014 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.