Difference between revisions of "2014 AIME I Problems/Problem 2"

(Problem 2)
Line 1: Line 1:
 
== Problem 2 ==
 
== Problem 2 ==
  
An urn contains <math>4</math> green balls and <math>6</math> blue balls. A second urn contains <math>16</math> green balls and <math>N</math> blue balls. A single ball is drawn at random from each urn. The probability that both balls are of the same color is 0.58. Find <math>N</math>.
+
An urn contains <math>4</math> green balls and <math>6</math> blue balls. A second urn contains <math>16</math> green balls and <math>N</math> blue balls. A single ball is drawn at random from each urn. The probability that both balls are of the same color is <math>0.58</math>. Find <math>N</math>.
  
 
== Solution ==
 
== Solution ==

Revision as of 19:11, 14 March 2014

Problem 2

An urn contains $4$ green balls and $6$ blue balls. A second urn contains $16$ green balls and $N$ blue balls. A single ball is drawn at random from each urn. The probability that both balls are of the same color is $0.58$. Find $N$.

Solution

First, we find the probability both are blue, then the probability both are green, and add the two probabilities which equals $0.58$. The probability both are blue is $\frac{4}{10}\cdot\frac{16}{16+N}$, and the probability both are green is $\frac{6}{10}\cdot\frac{N}{16+N}$, so \[\frac{4}{10}\cdot\frac{16}{16+N}+\frac{6}{10}\cdot\frac{N}{16+N}=\frac{29}{50}.\] Solving this equation, we get $N=144$.

See also

2014 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png