Difference between revisions of "2009 AIME II Problems/Problem 10"
m (→Solution 1) |
|||
Line 4: | Line 4: | ||
== Solution 1== | == Solution 1== | ||
− | Let <math>O</math> be the intersection of <math>BC</math> and <math>AD</math>. By the [[Angle Bisector Theorem]], <math>\frac {5}{BO}</math> = <math>\frac {13}{CO}</math>, so <math>BO</math> = <math>5x</math> and <math>CO</math> = <math>13x</math>, and <math>BO</math> + <math>OC</math> = <math>BC</math> = <math>12</math>, so <math>x</math> = <math>\frac {2}{3}</math>, and <math>OC</math> = <math>\frac {26}{3}</math>. Let <math>P</math> be the altitude from <math>D</math> to <math>OC</math>. It can be seen that triangle <math>DOP</math> is similar to triangle <math>AOB</math>, and triangle <math>DPC</math> is similar to triangle <math>ABC</math>. If <math>DP</math> = <math>15y</math>, then <math>CP</math> = <math>36y</math>, <math>OP</math> = <math>10y</math>, and <math>OD</math> = <math>5y\sqrt {13}</math>. Since <math>OP</math> + <math>CP</math> = <math>46y</math> = <math>\frac {26}{3}</math>, <math>y</math> = <math>\frac {13}{69}</math>, and <math>AD</math> = <math>\frac {60\sqrt{13}}{23}</math>. The answer is <math>60</math> + <math>13</math> + <math>23</math> = <math>\boxed{096}</math>. | + | Let <math>O</math> be the intersection of <math>BC</math> and <math>AD</math>. By the [[Angle Bisector Theorem]], <math>\frac {5}{BO}</math> = <math>\frac {13}{CO}</math>, so <math>BO</math> = <math>5x</math> and <math>CO</math> = <math>13x</math>, and <math>BO</math> + <math>OC</math> = <math>BC</math> = <math>12</math>, so <math>x</math> = <math>\frac {2}{3}</math>, and <math>OC</math> = <math>\frac {26}{3}</math>. Let <math>P</math> be the foot of the altitude from <math>D</math> to <math>OC</math>. It can be seen that triangle <math>DOP</math> is similar to triangle <math>AOB</math>, and triangle <math>DPC</math> is similar to triangle <math>ABC</math>. If <math>DP</math> = <math>15y</math>, then <math>CP</math> = <math>36y</math>, <math>OP</math> = <math>10y</math>, and <math>OD</math> = <math>5y\sqrt {13}</math>. Since <math>OP</math> + <math>CP</math> = <math>46y</math> = <math>\frac {26}{3}</math>, <math>y</math> = <math>\frac {13}{69}</math>, and <math>AD</math> = <math>\frac {60\sqrt{13}}{23}</math>. The answer is <math>60</math> + <math>13</math> + <math>23</math> = <math>\boxed{096}</math>. |
==Solution 2== | ==Solution 2== |
Revision as of 18:22, 26 October 2014
Four lighthouses are located at points ,
,
, and
. The lighthouse at
is
kilometers from the lighthouse at
, the lighthouse at
is
kilometers from the lighthouse at
, and the lighthouse at
is
kilometers from the lighthouse at
. To an observer at
, the angle determined by the lights at
and
and the angle determined by the lights at
and
are equal. To an observer at
, the angle determined by the lights at
and
and the angle determined by the lights at
and
are equal. The number of kilometers from
to
is given by
, where
,
, and
are relatively prime positive integers, and
is not divisible by the square of any prime. Find
+
+
.
Solution 1
Let be the intersection of
and
. By the Angle Bisector Theorem,
=
, so
=
and
=
, and
+
=
=
, so
=
, and
=
. Let
be the foot of the altitude from
to
. It can be seen that triangle
is similar to triangle
, and triangle
is similar to triangle
. If
=
, then
=
,
=
, and
=
. Since
+
=
=
,
=
, and
=
. The answer is
+
+
=
.
Solution 2
Extend and
to intersect at
. Note that since
and
by ASA congruency we have
. Therefore
.
By the angle bisector theorem, and
. Now we apply Stewart's theorem to find
:
and our final answer is .
See Also
2009 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.