Difference between revisions of "1964 AHSME Problems/Problem 34"
(Created page with "==Problem== If <math>n</math> is a multiple of <math>4</math>, the sum <math>s=1+2i+3i^2+\cdots+(n+1)i^n</math>, where <math>i=\sqrt{-1}</math>, equals: <math>\textbf{(A) }1+i\...") |
(→Problem) |
||
Line 3: | Line 3: | ||
If <math>n</math> is a multiple of <math>4</math>, the sum <math>s=1+2i+3i^2+\cdots+(n+1)i^n</math>, where <math>i=\sqrt{-1}</math>, equals: | If <math>n</math> is a multiple of <math>4</math>, the sum <math>s=1+2i+3i^2+\cdots+(n+1)i^n</math>, where <math>i=\sqrt{-1}</math>, equals: | ||
− | <math>\textbf{(A) }1+i\qquad\textbf{(B) }\frac{1}{2}(n+2)\qquad\textbf{(C) }\frac{1}{2}(n+2-ni)\qquad\textbf{(D) }\frac{1}{2}[(n+1)(1-i)+2]\qquad \textbf{(E) }\frac{1}{8}(n^2+8-4ni)</math> | + | <math>\textbf{(A) }1+i\qquad\textbf{(B) }\frac{1}{2}(n+2)\qquad\textbf{(C) }\frac{1}{2}(n+2-ni)\qquad</math> |
+ | |||
+ | <math>\textbf{(D) }\frac{1}{2}[(n+1)(1-i)+2]\qquad \textbf{(E) }\frac{1}{8}(n^2+8-4ni)</math> |
Revision as of 17:07, 5 March 2014
Problem
If is a multiple of , the sum , where , equals: