Difference between revisions of "1964 AHSME Problems/Problem 31"

Line 7: Line 7:
 
<math>\textbf{(A) }\frac{1}{2}f(n)\qquad\textbf{(B) }f(n)\qquad\textbf{(C) }2f(n)+1\qquad\textbf{(D) }f^2(n)\qquad \textbf{(E) }</math>
 
<math>\textbf{(A) }\frac{1}{2}f(n)\qquad\textbf{(B) }f(n)\qquad\textbf{(C) }2f(n)+1\qquad\textbf{(D) }f^2(n)\qquad \textbf{(E) }</math>
 
<math>\frac{1}{2}(f^2(n)-1)</math>
 
<math>\frac{1}{2}(f^2(n)-1)</math>
 +
 +
 +
==See Also==
 +
{{AHSME 40p box|year=1964|num-b=30|num-a=32}}
 +
 +
[[Category:Introductory Algebra Problems]]
 +
 +
{{MAA Notice}}

Revision as of 22:15, 24 July 2019

Problem

Let \[f(n)=\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{1+\sqrt{5}}{2}\right)^n+\dfrac{5-3\sqrt{5}}{10}\left(\dfrac{1-\sqrt{5}}{2}\right)^n.\]

Then $f(n+1)-f(n-1)$, expressed in terms of $f(n)$, equals:

$\textbf{(A) }\frac{1}{2}f(n)\qquad\textbf{(B) }f(n)\qquad\textbf{(C) }2f(n)+1\qquad\textbf{(D) }f^2(n)\qquad \textbf{(E) }$ $\frac{1}{2}(f^2(n)-1)$


See Also

1964 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 30
Followed by
Problem 32
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png