Difference between revisions of "2012 AIME I Problems/Problem 6"
(Omitted Solution 2, which was the same as Solution 1 but with worse wording.) |
(→Solution) |
||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
− | Substituting the first equation into the second, we find that <math>(z^{13})^{11} = z</math> and thus <math>z^{142} = 1.</math> So <math>z</math> must be a <math>142</math>nd root of unity, and thus the imaginary part of <math>z</math> will be <math>\sin{\frac{2k\pi}{142}} = \sin{\frac{k\pi}{71}}</math> | + | Substituting the first equation into the second, we find that <math>(z^{13})^{11} = z</math> and thus <math>z^{143} = z.</math> <math>z \neq 0,</math> because <math>\text{Im}(z)</math> is given as <math>\sin(\text{something ugly}),</math> so we can divide by <math>z</math> to get <math>z^{142} = 1.</math> So, <math>z</math> must be a <math>142</math>nd root of unity, and thus the imaginary part of <math>z</math> will be of the form <math>\sin{\frac{2k\pi}{142}} = \sin{\frac{k\pi}{71}},</math> where <math>k \in \{1, 2, \ldots, 141\}.</math> But note that <math>71</math> is prime and <math>k<71</math> by the conditions of the problem, so the denominator in the argument of this value will always be <math>71</math> and thus <math>n = \boxed{071.}</math> |
== See also == | == See also == | ||
{{AIME box|year=2012|n=I|num-b=5|num-a=7}} | {{AIME box|year=2012|n=I|num-b=5|num-a=7}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 00:54, 26 February 2014
Problem 6
The complex numbers and
satisfy
and the imaginary part of
is
, for relatively prime positive integers
and
with
Find
Solution
Substituting the first equation into the second, we find that and thus
because
is given as
so we can divide by
to get
So,
must be a
nd root of unity, and thus the imaginary part of
will be of the form
where
But note that
is prime and
by the conditions of the problem, so the denominator in the argument of this value will always be
and thus
See also
2012 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.