Difference between revisions of "2014 AMC 10B Problems/Problem 17"
m (added signature.) |
m (→Solution 1) |
||
Line 6: | Line 6: | ||
==Solution 1== | ==Solution 1== | ||
− | We begin by factoring the <math> | + | We begin by factoring the <math>10^{1002}</math> out. This leaves us with <math>5^{1002} - 1</math>. |
We factor the difference of squares, leaving us with <math>(5^{501} - 1)(5^{501} + 1)</math>. We note that all even powers of 5 more than two end in ...<math>625</math>. Also, all odd powers of five more than 2 end in ...<math>125</math>. Thus, <math>(5^{501} + 1)</math> would end in ...<math>126</math> and thus would contribute one power of two to the answer, but not more. | We factor the difference of squares, leaving us with <math>(5^{501} - 1)(5^{501} + 1)</math>. We note that all even powers of 5 more than two end in ...<math>625</math>. Also, all odd powers of five more than 2 end in ...<math>125</math>. Thus, <math>(5^{501} + 1)</math> would end in ...<math>126</math> and thus would contribute one power of two to the answer, but not more. |
Revision as of 08:19, 28 January 2015
Contents
Problem 17
What is the greatest power of that is a factor of
?
Solution 1
We begin by factoring the out. This leaves us with
.
We factor the difference of squares, leaving us with . We note that all even powers of 5 more than two end in ...
. Also, all odd powers of five more than 2 end in ...
. Thus,
would end in ...
and thus would contribute one power of two to the answer, but not more.
We can continue to factor as a difference of cubes, leaving us with
times an odd number.
ends in ...
, contributing two powers of two to the final result.
Adding these extra powers of two to the original
factored out, we obtain the final answer of
.
Solution 2
First, we can write the expression in a more primitive form which will allow us to start factoring.
Now, we can factor out
. This leaves us with
. Call this number
. Thus, our final answer will be
, where
is the largest power of
that divides
. Now we can consider
, since
by the answer choices.
Note that
The powers of
cycle in
with a period of
. Thus,
This means that
is divisible by
but not
, so
and our answer is
.
--happiface.
See Also
2014 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.