Difference between revisions of "User:DanielL2000"

(Problems)
Line 5: Line 5:
  
 
2. Find the number of integers <math>n</math> such that <cmath>1+\left\lfloor\dfrac{100n}{101}\right\rfloor=\left\lceil\dfrac{99n}{100}\right\rceil.</cmath> ''(Harvard-MIT Math Tournament)''
 
2. Find the number of integers <math>n</math> such that <cmath>1+\left\lfloor\dfrac{100n}{101}\right\rfloor=\left\lceil\dfrac{99n}{100}\right\rceil.</cmath> ''(Harvard-MIT Math Tournament)''
 +
 +
3. Compute <cmath>\sum_{a_1=0}^\infty\sum_{a_2=0}^\infty\cdots\sum_{a_7=0}^\infty\dfrac{a_1+a_2+\cdots+a_7}{3^{a_1+a_2+\cdots+a_7}}.</cmath> ''(Harvard-MIT Math Tournament)''
  
 
== Online Math Circle ==
 
== Online Math Circle ==

Revision as of 22:31, 21 February 2014

The home of DL2000

Problems

1. Find all positive integer solutions $x, y, z$ of the equation $3^x \plus{} 4^y \equal{} 5^z.$ (Error compiling LaTeX. Unknown error_msg) (IMO Shortlist 1991)

2. Find the number of integers $n$ such that \[1+\left\lfloor\dfrac{100n}{101}\right\rfloor=\left\lceil\dfrac{99n}{100}\right\rceil.\] (Harvard-MIT Math Tournament)

3. Compute \[\sum_{a_1=0}^\infty\sum_{a_2=0}^\infty\cdots\sum_{a_7=0}^\infty\dfrac{a_1+a_2+\cdots+a_7}{3^{a_1+a_2+\cdots+a_7}}.\] (Harvard-MIT Math Tournament)

Online Math Circle

Go to the OMC or Online Math Circle at:

newyorkmathcircle.weebly.com