Difference between revisions of "2014 AMC 12B Problems/Problem 21"
Kevin38017 (talk | contribs) |
(→Problem) |
||
Line 1: | Line 1: | ||
− | ==Problem== | + | ==Problem 21== |
− | In the figure, <math>ABCD</math> is a square of side length 1. | + | In the figure, <math> ABCD </math> is a square of side length <math> 1 </math>. The rectangles <math> JKHG </math> and <math> EBCF </math> are congruent. What is <math> BE </math>? |
+ | <asy> | ||
+ | pair A=(1,0), B=(0,0), C=(0,1), D=(1,1), E=(2-sqrt(3),0), F=(2-sqrt(3),1), G=(1,sqrt(3)/2), H=(2.5-sqrt(3),1), J=(.5,0), K=(2-sqrt(3),1-sqrt(3)/2); | ||
+ | draw(A--B--C--D--cycle); | ||
+ | draw(K--H--G--J--cycle); | ||
+ | draw(F--E); | ||
+ | label("$A$",A,SE); label("$B$",B,SW); label("$C$",C,NW); label("$D$",D,NE); label("$E$",E,S); label("$F$",F,N); | ||
+ | label("$G$",G,E); label("$H$",H,N); label("$J$",J,S); label("$K$",K,W); | ||
+ | </asy> | ||
+ | <math> \textbf{(A) }\frac{1}{2}(\sqrt{6}-2)\qquad\textbf{(B) }\frac{1}{4}\qquad\textbf{(C) }2-\sqrt{3}\qquad\textbf{(D) }\frac{\sqrt{3}}{6}\qquad\textbf{(E) } 1-\frac{\sqrt{2}}{2}</math> | ||
− | + | ||
+ | [[2014 AMC 12B Problems/Problem 21|Solution]] | ||
==Solution== | ==Solution== |
Revision as of 22:36, 20 February 2014
Problem 21
In the figure, is a square of side length . The rectangles and are congruent. What is ?
Solution
Let . Let . Because and , are all similar. Using proportions and the pythagorean theorem, we find Because we know that , we can set up a systems of equations Solving for in the second equation, we get Plugging this into the first equation, we get Plugging into the previous equation with , we get