Difference between revisions of "2006 AIME I Problems/Problem 8"

Line 13: Line 13:
 
== See also ==
 
== See also ==
 
* [[2006 AIME I Problems]]
 
* [[2006 AIME I Problems]]
 +
 +
[[Category:Intermediate Geometry Problems]]

Revision as of 16:21, 18 July 2006

Problem

Hexagon $ABCDEF$ is divided into four rhombuses, $\mathcal{P, Q, R, S,}$ and $\mathcal{T,}$ as shown. Rhombuses $\mathcal{P, Q, R,}$ and $\mathcal{S}$ are congruent, and each has area $\sqrt{2006}.$ Let $K$ be the area of rhombus $\mathcal{T}.$ Given that $K$ is a positive integer, find the number of possible values for $K.$



Solution

See also