Difference between revisions of "2000 AMC 12 Problems"

(Problem 4)
(Problem 1)
Line 1: Line 1:
 
== Problem 1 ==
 
== Problem 1 ==
  
In the year 2001, the United States will host the International Mathematical Olympiad. Let <math>I,M,</math> and <math>O</math> be distinct positive integers such that the product <math>I \cdot M \cdot O = 2001 </math>. What is the largest possible value of the sum <math>I + M + O</math>?
+
In the year 2001, the United States will host the International Mathematical Olympiad. Let <math> \displaystyle I,M,</math> and <math>\displaystyle O</math> be distinct positive integers such that the product <math>I \cdot M \cdot O = 2001 </math>. What is the largest possible value of the sum <math>I + M + O</math>?
  
 
<center><math> \mathrm{(A) \ 23 } \qquad \mathrm{(B) \ 55 } \qquad \mathrm{(C) \ 99 } \qquad \mathrm{(D) \ 111 } \qquad \mathrm{(E) \ 671 }  </math></center>
 
<center><math> \mathrm{(A) \ 23 } \qquad \mathrm{(B) \ 55 } \qquad \mathrm{(C) \ 99 } \qquad \mathrm{(D) \ 111 } \qquad \mathrm{(E) \ 671 }  </math></center>

Revision as of 18:50, 4 July 2006

Problem 1

In the year 2001, the United States will host the International Mathematical Olympiad. Let $\displaystyle I,M,$ and $\displaystyle O$ be distinct positive integers such that the product $I \cdot M \cdot O = 2001$. What is the largest possible value of the sum $I + M + O$?

$\mathrm{(A) \ 23 } \qquad \mathrm{(B) \ 55 } \qquad \mathrm{(C) \ 99 } \qquad \mathrm{(D) \ 111 } \qquad \mathrm{(E) \ 671 }$

Solution

Problem 2

$2000(2000^{2000}) =$

$\mathrm{(A) \ 2000^{2001} } \qquad \mathrm{(B) \ 4000^{2000} } \qquad \mathrm{(C) \ 2000^{4000} } \qquad \mathrm{(D) \ 4,000,000^{2000} } \qquad \mathrm{(E) \ 2000^{4,000,000} }$


Solution

Problem 3

Each day, Jenny ate 20% of the jellybeans that were in her jar at the beginning of that day. At the end of the second day, 32 remained. How many jellybeans were in the jar originally?

$\mathrm{(A) \ 40 } \qquad \mathrm{(B) \ 50 } \qquad \mathrm{(C) \ 55 } \qquad \mathrm{(D) \ 60 } \qquad \mathrm{(E) \ 75 }$

Solution

Problem 4

The Fibonacci sequence 1,1,2,3,5,8,13,21,... starts with two 1s, and each term afterwards is the sum of its two predecessors. Which one of the ten digits is the last to appear in the units position of a number in the Fibonacci sequence?

$\mathrm{(A) \ 0 } \qquad \mathrm{(B) \ 4 } \qquad \mathrm{(C) \ 6 } \qquad \mathrm{(D) \ 7 } \qquad \mathrm{(E) \ 9 }$

Solution

Problem 5

Solution

Problem 6

Solution

Problem 7

Solution

Problem 8

Solution

Problem 9

Solution

Problem 10

Solution

Problem 11

Solution

Problem 12

Solution

Problem 13

Solution

Problem 14

Solution

Problem 15

Solution

Problem 16

Solution

Problem 17

Solution

Problem 18

Solution

Problem 19

Solution

Problem 20

Solution

Problem 21

Solution

Problem 22

Solution

Problem 23

Solution

Problem 24

Solution

Problem 25

Solution

See also