Difference between revisions of "2014 AMC 10A Problems/Problem 22"

(Solution)
(Solution)
Line 6: Line 6:
  
 
==Solution==
 
==Solution==
Note that <math>\tan 15^\circ=\frac{EC}{10} \Rightarrow EC=20-10 \sqrt 3</math>. Therefore, we have <math>DC=10\sqrt 3</math>. Since <math>ADE</math> is a <math>30-60-90</math> triangle, <math>AE=2 \cdot DE=2 \cdot 10=\boxed{\textbf{(E)} \: 20}</math>
+
Note that <math>\tan 15^\circ=\frac{EC}{10} \Rightarrow EC=20-10 \sqrt 3</math>. Therefore, we have <math>DE=10\sqrt 3</math>. Since <math>ADE</math> is a <math>30-60-90</math> triangle, <math>AE=2 \cdot DE=2 \cdot 10=\boxed{\textbf{(E)} \: 20}</math>
  
 
==See Also==
 
==See Also==

Revision as of 15:36, 18 February 2014

Problem

In rectangle $ABCD$, $AB=20$ and $BC=10$. Let $E$ be a point on $\overline{CD}$ such that $\angle CBE=15^\circ$. What is $AE$?

$\textbf{(A)}\ \dfrac{20\sqrt3}3\qquad\textbf{(B)}\ 10\sqrt3\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 11\sqrt3\qquad\textbf{(E)}\ 20$

Solution

Note that $\tan 15^\circ=\frac{EC}{10} \Rightarrow EC=20-10 \sqrt 3$. Therefore, we have $DE=10\sqrt 3$. Since $ADE$ is a $30-60-90$ triangle, $AE=2 \cdot DE=2 \cdot 10=\boxed{\textbf{(E)} \: 20}$

See Also

2014 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png