Difference between revisions of "2014 AMC 10A Problems/Problem 14"
(→See Also: problem no. incorrect) |
(→Solution) |
||
Line 6: | Line 6: | ||
==Solution== | ==Solution== | ||
+ | <asy>//Needs refining | ||
+ | size(20cm); | ||
+ | fill((0,10)--(6,8)--(0,-10)--cycle,rgb(.7,.7,.7)); | ||
+ | for(int i=-2;i<=8;i+=1) | ||
+ | draw((i,-12)--(i,12),grey); | ||
+ | for(int j=-12;j<=12;j+=1) | ||
+ | draw((-2,j)--(8,j),grey); | ||
+ | draw((-3,0)--(9,0),linewidth(1),Arrows); //x-axis | ||
+ | draw((0,-13)--(0,13),linewidth(1),Arrows); //y-axis | ||
+ | dot((0,0)); | ||
+ | dot((6,8)); | ||
+ | draw((-2,10.66667)--(8,7.33333),Arrows); | ||
+ | draw((7.33333,12)--(-0.66667,-12),Arrows); | ||
+ | draw((6,8)--(0,8)); | ||
+ | draw((6,8)--(0,0)); | ||
+ | draw(rightanglemark((0,10),(6,8),(0,-10),20)); | ||
+ | label("$A$",(6,8),NE); | ||
+ | </asy> | ||
+ | Note that the <math>y</math>-coordinates of <math>P</math> and <math>Q</math> must be negations of each other; hence it follows that <math>O=(0,0)</math> is the midpoint of <math>\overline{PQ}</math>. Because <math>\triangle APQ</math> is right, the median <math>\overline{OA}</math> is its circumradius and <math>O</math> its circumcentre. The [[Pythagorean Theorem]] gives us <math>AO=\sqrt{6^2+8^2}=10</math>, so <math>OP=OQ=10</math>. Thus <math>P</math> has <math>y</math>-coordinate 10 and <math>Q</math> <math>y</math>-coordinate -10 and <math>PQ=20</math>. The altitude from <math>A</math> to <math>\overline{PQ}</math> is <math>6</math> (<math>\overline{PQ}</math> is on the <math>y</math>-axis, hence this altitude is just the <math>x</math>-coordinate of <math>A</math>), so <math>[\triangle APQ]=\dfrac{20\cdot6}{2}=60\implies\boxed{\textbf{(D)}\ 60}</math>. | ||
==See Also== | ==See Also== |
Revision as of 07:33, 7 February 2014
Problem
The -intercepts, and , of two perpendicular lines intersecting at the point have a sum of zero. What is the area of ?
Solution
Note that the -coordinates of and must be negations of each other; hence it follows that is the midpoint of . Because is right, the median is its circumradius and its circumcentre. The Pythagorean Theorem gives us , so . Thus has -coordinate 10 and -coordinate -10 and . The altitude from to is ( is on the -axis, hence this altitude is just the -coordinate of ), so .
See Also
2014 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.