Difference between revisions of "2003 AMC 12A Problems/Problem 18"

(Solution 2)
(Solution 2)
Line 18: Line 18:
 
== Solution 2 ==
 
== Solution 2 ==
  
Notice that <math>q+r=0\pmod{11}\Rightarrow100q+r=0\pmod{11}</math>. This means that any number whose quotient and remainder sum is divisible by 11 must also be divisible by 11. Therefore, there are <math>\frac{99990-11010}{11}+1=8181</math> possible values.
+
Notice that <math>q+r=0\pmod{11}\Rightarrow100q+r=0\pmod{11}</math>. This means that any number whose quotient and remainder sum is divisible by 11 must also be divisible by 11. Therefore, there are <math>\frac{99990-11010}{11}+1=8181\{(B)}</math> possible values.
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2003|ab=A|num-b=17|num-a=19}}
 
{{AMC12 box|year=2003|ab=A|num-b=17|num-a=19}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 14:06, 23 December 2013

Problem

Let $n$ be a $5$-digit number, and let $q$ and $r$ be the quotient and the remainder, respectively, when $n$ is divided by $100$. For how many values of $n$ is $q+r$ divisible by $11$?

$\mathrm{(A) \ } 8180\qquad \mathrm{(B) \ } 8181\qquad \mathrm{(C) \ } 8182\qquad \mathrm{(D) \ } 9000\qquad \mathrm{(E) \ } 9090$

Solution 1

When a $5$-digit number is divided by $100$, the first $3$ digits become the quotient, $q$, and the last $2$ digits become the remainder, $r$.

Therefore, $q$ can be any integer from $100$ to $999$ inclusive, and $r$ can be any integer from $0$ to $99$ inclusive.

For each of the $9\cdot10\cdot10=900$ possible values of $q$, there are at least $\lfloor \frac{100}{11} \rfloor = 9$ possible values of $r$ such that $q+r \equiv 0\pmod{11}$.

Since there is $1$ "extra" possible value of $r$ that is congruent to $0\pmod{11}$, each of the $\lfloor \frac{900}{11} \rfloor = 81$ values of $q$ that are congruent to $0\pmod{11}$ have $1$ more possible value of $r$ such that $q+r \equiv 0\pmod{11}$.

Therefore, the number of possible values of $n$ such that $q+r \equiv 0\pmod{11}$ is $900\cdot9+81\cdot1=8181 \Rightarrow\boxed{(B)}$.

Solution 2

Notice that $q+r=0\pmod{11}\Rightarrow100q+r=0\pmod{11}$. This means that any number whose quotient and remainder sum is divisible by 11 must also be divisible by 11. Therefore, there are $\frac{99990-11010}{11}+1=8181\{(B)}$ (Error compiling LaTeX. Unknown error_msg) possible values.

See Also

2003 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png