Difference between revisions of "2013 AMC 8 Problems/Problem 15"
(→Solution) |
m (→Solution) |
||
Line 12: | Line 12: | ||
<math>76-44=32=2^5</math>, so <math>r=5</math>. | <math>76-44=32=2^5</math>, so <math>r=5</math>. | ||
− | + | Next, <math>1421-125=1296</math>. Then, we find <math>s</math>. | |
− | |||
− | |||
<math>6*6=36</math> | <math>6*6=36</math> | ||
Line 20: | Line 18: | ||
<math>6*36=216</math> | <math>6*36=216</math> | ||
− | <math>216 | + | <math>6*216=1296=6^4</math>, so <math>s=4</math>. |
It may help to memorize that <math>1296</math> is <math>6^4</math>. | It may help to memorize that <math>1296</math> is <math>6^4</math>. |
Revision as of 22:53, 27 November 2013
Problem
If , , and , what is the product of , , and ?
Solution
This can be brute-forced.
, so .
, so .
Next, . Then, we find .
, so .
It may help to memorize that is .
Therefore the answer is .
See Also
2013 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.