Difference between revisions of "1998 AHSME Problems/Problem 29"
(→Solution 1) |
|||
Line 6: | Line 6: | ||
== Solution 1 == | == Solution 1 == | ||
− | + | The answer is actually (D) | |
− | |||
== Solution 2 == | == Solution 2 == |
Revision as of 21:28, 7 December 2014
Contents
Problem
A point in the plane is called a lattice point if both and are integers. The area of the largest square that contains exactly three lattice points in its interior is closest to
Solution 1
The answer is actually (D)
Solution 2
Apply Pick's Theorem. 4 lattice points on the border edges, 3 points in the interior. , implying that ,
See also
1998 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 28 |
Followed by Problem 30 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.