Difference between revisions of "1993 AHSME Problems/Problem 21"

Line 1: Line 1:
Let a_1,a_2,...,a_k be a finite arithmetic sequence with a_4 +a_7+a_10 = 17 and a_4+a_5+...+a_13 +a_14 = 77. if a_k = 13, then k =
+
== Problem ==
  
(A) 16     (B) 18     (C) 20     (D) 22     (E) 24
+
Let <math>a_1,a_2,\cdots,a_k</math> be a finite arithmetic sequence with <math>a_4 +a_7+a_{10} = 17</math> and <math>a_4+a_5+\cdots+a_{13} +a_{14} = 77</math>.
 +
 
 +
If <math>a_k = 13</math>, then <math>k =</math>
 +
 
 +
<math>\text{(A) } 16\quad
 +
\text{(B) } 18\quad
 +
\text{(C) } 20\quad
 +
\text{(D) } 22\quad
 +
\text{(E) } 24</math>
 +
 
 +
== Solution ==
 +
<math>\fbox{B}</math>
 +
 
 +
== See also ==
 +
{{AHSME box|year=1993|num-b=20|num-a=22}} 
 +
 
 +
[[Category: Intermediate Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 00:47, 26 September 2014

Problem

Let $a_1,a_2,\cdots,a_k$ be a finite arithmetic sequence with $a_4 +a_7+a_{10} = 17$ and $a_4+a_5+\cdots+a_{13} +a_{14} = 77$.

If $a_k = 13$, then $k =$

$\text{(A) } 16\quad \text{(B) } 18\quad \text{(C) } 20\quad \text{(D) } 22\quad \text{(E) } 24$

Solution

$\fbox{B}$

See also

1993 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png