Difference between revisions of "1991 AHSME Problems/Problem 20"

m
Line 1: Line 1:
 +
== Problem ==
 +
 
The sum of all real <math>x</math> such that <math>(2^x-4)^3+(4^x-2)^3=(4^x+2^x-6)^3</math> is
 
The sum of all real <math>x</math> such that <math>(2^x-4)^3+(4^x-2)^3=(4^x+2^x-6)^3</math> is
  
 
(A) 3/2  (B) 2  (C) 5/2  (D) 3  (E) 7/2
 
(A) 3/2  (B) 2  (C) 5/2  (D) 3  (E) 7/2
 +
 +
== Solution ==
 +
<math>\fbox{}</math>
 +
 +
== See also ==
 +
{{AHSME box|year=1991|num-b=19|num-a=21}} 
 +
 +
[[Category: Intermediate Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 02:00, 28 September 2014

Problem

The sum of all real $x$ such that $(2^x-4)^3+(4^x-2)^3=(4^x+2^x-6)^3$ is

(A) 3/2 (B) 2 (C) 5/2 (D) 3 (E) 7/2

Solution

$\fbox{}$

See also

1991 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png