Difference between revisions of "1991 AHSME Problems/Problem 17"
m |
|||
Line 1: | Line 1: | ||
+ | == Problem == | ||
+ | |||
A positive integer <math>N</math> is a ''palindrome'' if the integer obtained by reversing the sequence of digits of <math>N</math> is equal to <math>N</math>. The year 1991 is the only year in the current century with the following 2 properties: | A positive integer <math>N</math> is a ''palindrome'' if the integer obtained by reversing the sequence of digits of <math>N</math> is equal to <math>N</math>. The year 1991 is the only year in the current century with the following 2 properties: | ||
Line 6: | Line 8: | ||
How many years in the millenium between 1000 and 2000 have properties (a) and (b)? | How many years in the millenium between 1000 and 2000 have properties (a) and (b)? | ||
+ | |||
+ | == Solution == | ||
+ | <math>\fbox{}</math> | ||
+ | |||
+ | == See also == | ||
+ | {{AHSME box|year=1991|num-b=16|num-a=18}} | ||
+ | |||
+ | [[Category: Introductory Algebra Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 02:05, 28 September 2014
Problem
A positive integer is a palindrome if the integer obtained by reversing the sequence of digits of is equal to . The year 1991 is the only year in the current century with the following 2 properties:
(a) It is a palindrome
(b) It factors as a product of a 2-digit prime palindrome and a 3-digit prime palindrome.
How many years in the millenium between 1000 and 2000 have properties (a) and (b)?
Solution
See also
1991 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.