Difference between revisions of "1991 AHSME Problems/Problem 7"

Line 1: Line 1:
\If <math>x=\frac{a}{b}</math>, <math>a\neq b</math> and <math>b\neq 0</math>, then <math>\frac{a+b}{a-b}=</math>
+
==Problem==
 +
If <math>x=\frac{a}{b}</math>, <math>a\neq b</math> and <math>b\neq 0</math>, then <math>\frac{a+b}{a-b}=</math>
  
 
(A) <math>\frac{x}{x+1}</math> (B) <math>\frac{x+1}{x-1}</math> (C) <math>1</math> (D) <math>x-\frac{1}{x}</math> (E) <math>x+\frac{1}{x}</math>
 
(A) <math>\frac{x}{x+1}</math> (B) <math>\frac{x+1}{x-1}</math> (C) <math>1</math> (D) <math>x-\frac{1}{x}</math> (E) <math>x+\frac{1}{x}</math>
 +
 +
==Solution==
 +
<math>\frac{a+b}{a-b}= </math>\frac{\frac{a}{b} + 1}{\frac{a}{b} - 1} = \frac{x+1}{x-1}<math>, so the answer is </math>\boxed{B}$.
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:39, 20 April 2014

Problem

If $x=\frac{a}{b}$, $a\neq b$ and $b\neq 0$, then $\frac{a+b}{a-b}=$

(A) $\frac{x}{x+1}$ (B) $\frac{x+1}{x-1}$ (C) $1$ (D) $x-\frac{1}{x}$ (E) $x+\frac{1}{x}$

Solution

$\frac{a+b}{a-b}=$\frac{\frac{a}{b} + 1}{\frac{a}{b} - 1} = \frac{x+1}{x-1}$, so the answer is$\boxed{B}$. The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png