Difference between revisions of "1990 AHSME Problems/Problem 30"

Line 1: Line 1:
Let <math>R_n=\frac{1}{2}(a^n+b^n)</math> for each non-negative integer <math>n</math> where <math>a=3+2\sqrt{2}</math> and <math>b=3-2\sqrt{2}</math>. The value of <math>R_{12345}</math> is an integer. What is its units digit?
+
== Problem ==
 +
 
 +
If <math>R_n=\frac{1}{2}(a^n+b^n)</math> where <math>a=3+2\sqrt{2}</math> and <math>b=3-2\sqrt{2}</math>, and <math>n=0,1,2,\cdots,</math> then <math>R_{12345}</math> is an integer. Its units digit is
 +
 
 +
<math>\text{(A) } 1\quad
 +
\text{(B) } 3\quad
 +
\text{(C) } 5\quad
 +
\text{(D) } 7\quad
 +
\text{(E) } 9</math>
 +
 
 +
== Solution ==
 +
<math>\fbox{E}</math>
 +
 
 +
== See also ==
 +
{{AHSME box|year=1990|num-b=29|num-a=30}} 
 +
 
 +
[[Category: Intermediate Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 01:00, 29 September 2014

Problem

If $R_n=\frac{1}{2}(a^n+b^n)$ where $a=3+2\sqrt{2}$ and $b=3-2\sqrt{2}$, and $n=0,1,2,\cdots,$ then $R_{12345}$ is an integer. Its units digit is

$\text{(A) } 1\quad \text{(B) } 3\quad \text{(C) } 5\quad \text{(D) } 7\quad \text{(E) } 9$

Solution

$\fbox{E}$

See also

1990 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 29
Followed by
Problem 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png