Difference between revisions of "1985 AHSME Problems/Problem 8"

(Improved wording, formatting, and LaTeX)
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
Let <math> a, a', b, </math> and <math> b' </math> be real numbers with <math> a </math> and <math> a' </math> nonzero. The solution to <math> ax+b=0 </math> is less than the solution to <math> a'x+b'=0 </math> if and only if  
+
Let <math>a,a',b,b'</math> be real numbers with <math>a</math> and <math>a'</math> nonzero. The solution to <math>ax+b=0</math> is less than the solution to <math>a'x+b'=0</math> if and only if  
  
<math> \mathrm{(A)\ } a'b<ab' \qquad \mathrm{(B) \ }ab'<a'b \qquad \mathrm{(C) \  } ab<a'b' \qquad \mathrm{(D) \  } \frac{b}{a}<\frac{b'}{a'} \qquad </math>
+
<math> \mathrm{(A)\ } a'b < ab' \qquad \mathrm{(B) \ }ab' < a'b \qquad \mathrm{(C) \  } ab < a'b' \qquad \mathrm{(D) \  } \frac{b}{a} < \frac{b'}{a'} \qquad \mathrm{(E) \  }\frac{b'}{a'} < \frac{b}{a}  </math>
 
 
<math> \mathrm{(E) \  }\frac{b'}{a'}<\frac{b}{a}  </math>
 
  
 
==Solution==
 
==Solution==
The solution to <math> ax+b=0 </math> is <math> \frac{-b}{a} </math> and the solution to <math> a'x+b'=0 </math> is <math> \frac{-b'}{a'} </math>. The first solution is less than the second if <math> \frac{-b}{a}<\frac{-b'}{a'} </math>. We can get rid of the negative signs if we reverse the inequality sign, so we have <math> \frac{b'}{a'}<\frac{b}{a} </math>. All our steps are reversible, so our answer is <math> \boxed{\text{E}} </math>.
+
The solution to <math>ax+b=0</math> is <math>x = \frac{-b}{a}</math>, while that to <math>a'x+b'=0</math> is <math>x = \frac{-b'}{a'}</math>. The first solution is less than the second precisely if <cmath>\frac{-b}{a} < \frac{-b'}{a'},</cmath> and multiplying this inequality by <math>-1</math> reversees the inequality sign, yielding <math>\boxed{\text{(E)} \ \frac{b'}{a'} < \frac{b}{a}}</math>.
  
 
==See Also==
 
==See Also==
 
{{AHSME box|year=1985|num-b=7|num-a=9}}
 
{{AHSME box|year=1985|num-b=7|num-a=9}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 18:13, 19 March 2024

Problem

Let $a,a',b,b'$ be real numbers with $a$ and $a'$ nonzero. The solution to $ax+b=0$ is less than the solution to $a'x+b'=0$ if and only if

$\mathrm{(A)\ } a'b < ab' \qquad \mathrm{(B) \ }ab' < a'b \qquad \mathrm{(C) \  } ab < a'b' \qquad \mathrm{(D) \  } \frac{b}{a} < \frac{b'}{a'} \qquad \mathrm{(E) \  }\frac{b'}{a'} < \frac{b}{a}$

Solution

The solution to $ax+b=0$ is $x = \frac{-b}{a}$, while that to $a'x+b'=0$ is $x = \frac{-b'}{a'}$. The first solution is less than the second precisely if \[\frac{-b}{a} < \frac{-b'}{a'},\] and multiplying this inequality by $-1$ reversees the inequality sign, yielding $\boxed{\text{(E)} \ \frac{b'}{a'} < \frac{b}{a}}$.

See Also

1985 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png