Difference between revisions of "2000 AMC 8 Problems/Problem 14"
Soccerpro101 (talk | contribs) (→Solution) |
|||
Line 9: | Line 9: | ||
Finding a pattern for each half of the sum, even powers of <math>19</math> have a units digit of <math>1</math>, and odd powers of <math>19</math> have a units digit of <math>9</math>. So, <math>19^{19}</math> has a units digit of <math>9</math>. | Finding a pattern for each half of the sum, even powers of <math>19</math> have a units digit of <math>1</math>, and odd powers of <math>19</math> have a units digit of <math>9</math>. So, <math>19^{19}</math> has a units digit of <math>9</math>. | ||
− | Powers of <math>99</math> have the exact same property, so <math>99^{99}</math> also has a units digit of <math>9</math>. <math>9+9=18</math> which has a units digit of <math>8</math>, so the answer is <math>\boxed{ | + | Powers of <math>99</math> have the exact same property, so <math>99^{99}</math> also has a units digit of <math>9</math>. <math>9+9=18</math> which has a units digit of <math>8</math>, so the answer is <math>\boxed{Dimaria}</math>. |
==See Also== | ==See Also== |
Revision as of 11:52, 24 October 2016
Problem
What is the units digit of ?
Solution
Finding a pattern for each half of the sum, even powers of have a units digit of , and odd powers of have a units digit of . So, has a units digit of .
Powers of have the exact same property, so also has a units digit of . which has a units digit of , so the answer is .
See Also
2000 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.