Difference between revisions of "2000 AMC 8 Problems/Problem 8"

(Problem)
Line 1: Line 1:
==Problem==
+
-
 
 
Three dice with faces numbered <math>1</math> through <math>6</math> are stacked as shown. Seven of the eighteen faces are visible, leaving eleven faces hidden (back, bottom, between). The total number of dots NOT visible in this view is
 
 
 
<asy>
 
draw((0,0)--(2,0)--(3,1)--(3,7)--(1,7)--(0,6)--cycle);
 
draw((3,7)--(2,6)--(0,6));
 
draw((3,5)--(2,4)--(0,4));
 
draw((3,3)--(2,2)--(0,2));
 
draw((2,0)--(2,6));
 
 
 
dot((1,1)); dot((.5,.5)); dot((1.5,.5)); dot((1.5,1.5)); dot((.5,1.5));
 
dot((2.5,1.5));
 
dot((.5,2.5)); dot((1.5,2.5)); dot((1.5,3.5)); dot((.5,3.5));
 
dot((2.25,2.75)); dot((2.5,3)); dot((2.75,3.25)); dot((2.25,3.75)); dot((2.5,4)); dot((2.75,4.25));
 
dot((.5,5.5)); dot((1.5,4.5));
 
dot((2.25,4.75)); dot((2.5,5.5)); dot((2.75,6.25));
 
dot((1.5,6.5));
 
</asy>
 
 
 
<math>\text{(A)}\ 21 \qquad \text{(B)}\ 22 \qquad \text{(C)}\ 31 \qquad \text{(D)}\ 41 \qquad \text{(E)}\ 53</math>
 
  
 
==Solution==
 
==Solution==

Revision as of 20:47, 4 July 2020

-

Solution

The numbers on one die total $1+2+3+4+5+6 = 21$, so the numbers on the three dice total $63$. Numbers $1, 1, 2, 3, 4, 5, 6$ are visible, and these total $22$. This leaves $63 - 22 = \boxed{\text{(D) 41}}$ not seen.

See Also

2000 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png