Difference between revisions of "2005 AIME I Problems/Problem 6"
(→Solution 3) |
|||
Line 28: | Line 28: | ||
-Solution by '''thecmd999''' | -Solution by '''thecmd999''' | ||
+ | |||
+ | == Solution 4 == | ||
+ | |||
+ | Realizing that if we add 1 to both sides we get <math>x^4-4x^3+6x^2-4x+1=2006</math> which can be factored as <math>(x-1)^4=2006</math>. Then we can substitute <math>(x-1)</math> with <math>y</math> which leaves us with <math>y^4=2006</math>. Now subtracting 2006 from both sides we get some difference of squares <math>y^4-2006=0 \rightarrow (y-\sqrt[4]{2006})(y+\sqrt[4]{2006})(y^2+\sqrt{2006})=0</math> The question asks for the product of the complex roots so we only care about the last factor which is equal to zero. From there we can solve <math>y^2+\sqrt{2006}=0</math>, we can substitute <math>(x-1)</math> for <math>y</math> giving us <math>(x-1)^2+\sqrt{2006}=0</math>, expanding this we get <math>x^2-2x+1+\sqrt{2006}=0</math>. We know that the product of a quadratics roots is <math>\frac{c}{a}</math> which leaves us with <math>\frac{1+\sqrt{2006}}{1}=1+\sqrt{2006}\approx\boxed{045}</math> | ||
== See also == | == See also == |
Revision as of 15:44, 2 February 2014
Problem
Let be the product of the nonreal roots of
Find
Solution 1
The left-hand side of that equation is nearly equal to . Thus, we add 1 to each side in order to complete the fourth power and get
.
Let be the positive real fourth root of 2006. Then the roots of the above equation are
for
. The two non-real members of this set are
and
. Their product is
.
so
.
Solution 2
Starting like before,
This time we apply differences of squares.
so
If you think of each part of the product as a quadratic, then
is bound to hold the two non-real roots since the other definitely crosses the x-axis twice since it is just
translated down and right.
Therefore the products of the roots of
or
so
.
Solution 3
If we don't see the fourth power, we can always factor the LHS to try to create a quadratic substitution. Checking, we find that and
are both roots. Synthetic division gives
. We now have our quadratic substitution of
, giving us
. From here we proceed as in Solution 1 to get
.
-Solution by thecmd999
Solution 4
Realizing that if we add 1 to both sides we get which can be factored as
. Then we can substitute
with
which leaves us with
. Now subtracting 2006 from both sides we get some difference of squares
The question asks for the product of the complex roots so we only care about the last factor which is equal to zero. From there we can solve
, we can substitute
for
giving us
, expanding this we get
. We know that the product of a quadratics roots is
which leaves us with
See also
2005 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.