Difference between revisions of "2006 USAMO Problems/Problem 6"
5849206328x (talk | contribs) m |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | (''Zuming Feng, Zhonghao Ye'') Let <math>ABCD </math> be a quadrilateral, and let <math> E </math> and <math>F </math> be points on sides <math>AD </math> and <math>BC </math>, respectively, such that <math>AE/ED = BF/FC </math>. Ray <math>FE </math> meets rays <math>BA </math> and <math>CD </math> at <math>S </math> and <math>T </math> respectively. Prove that the circumcircles of triangles <math>SAE, SBF, TCF, </math> and <math>TDE </math> pass through a common point. | ||
− | + | == Solutions == | |
− | |||
− | = | ||
+ | === Solution 1 === | ||
Let the intersection of the circumcircles of <math>SAE</math> and <math>SBF</math> be <math>X</math>, and let the intersection of the circumcircles of <math>TCF</math> and <math>TDE</math> be <math>Y</math>. | Let the intersection of the circumcircles of <math>SAE</math> and <math>SBF</math> be <math>X</math>, and let the intersection of the circumcircles of <math>TCF</math> and <math>TDE</math> be <math>Y</math>. | ||
Line 16: | Line 16: | ||
From the similarity, we have that <math>XE/XF=AE/BF</math>. But we are given <math>ED/AE=CF/BF</math>, so multiplying the 2 equations together gets us <math>ED/FC=XE/XF</math>. <math>DEX,CFX</math> are the supplements of <math>AEX, BFX</math>, which are congruent, so <math>DEX=CFX</math>, and so <math>XED~XFC</math> by SAS similarity, and so <math>X</math> is also the center of spiral similarity for <math>E,D,F,</math> and <math>C</math>. Thus, <math>X</math> and <math>Y</math> are the same point, which all the circumcircles pass through, and so the statement is true. | From the similarity, we have that <math>XE/XF=AE/BF</math>. But we are given <math>ED/AE=CF/BF</math>, so multiplying the 2 equations together gets us <math>ED/FC=XE/XF</math>. <math>DEX,CFX</math> are the supplements of <math>AEX, BFX</math>, which are congruent, so <math>DEX=CFX</math>, and so <math>XED~XFC</math> by SAS similarity, and so <math>X</math> is also the center of spiral similarity for <math>E,D,F,</math> and <math>C</math>. Thus, <math>X</math> and <math>Y</math> are the same point, which all the circumcircles pass through, and so the statement is true. | ||
+ | {{alternate solutions}} | ||
− | == See | + | == See also == |
− | + | * <url>viewtopic.php?t=84559 Discussion on AoPS/MathLinks</url> | |
− | * | ||
− | |||
+ | {{USAMO newbox|year=2006|num-b=5|after=Last Problem}} | ||
[[Category:Olympiad Geometry Problems]] | [[Category:Olympiad Geometry Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 03:34, 6 August 2014
Contents
Problem
(Zuming Feng, Zhonghao Ye) Let be a quadrilateral, and let and be points on sides and , respectively, such that . Ray meets rays and at and respectively. Prove that the circumcircles of triangles and pass through a common point.
Solutions
Solution 1
Let the intersection of the circumcircles of and be , and let the intersection of the circumcircles of and be .
because tends both arcs and . because tends both arcs and . Thus, by AA similarity, and is the center of spiral similarity for and . because tends both arcs and . because tends both arcs and . Thus, by AA similarity, and is the center of spiral similarity for and .
From the similarity, we have that . But we are given , so multiplying the 2 equations together gets us . are the supplements of , which are congruent, so , and so by SAS similarity, and so is also the center of spiral similarity for and . Thus, and are the same point, which all the circumcircles pass through, and so the statement is true.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See also
- <url>viewtopic.php?t=84559 Discussion on AoPS/MathLinks</url>
2006 USAMO (Problems • Resources) | ||
Preceded by Problem 5 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.