Difference between revisions of "1996 USAMO Problems/Problem 5"

Line 1: Line 1:
'''Problem:'''
+
==Problem==
  
----
+
Let <math>ABC</math> be a triangle, and <math>M</math> an interior point such that <math>\angle MAB=10^\circ </math>, <math>\angle MBA=20^\circ</math> , <math>\angle MAC= 40^\circ</math> and <math>\angle MCA=30^\circ</math>. Prove that the triangle is isosceles.
  
Let <math>ABC</math> be a triangle, and <math>M</math> an interior point such that <math>\angle MAB=10^\circ </math>, <math>\angle MBA=10^\circ</math> , <math>\angle MAC= 40^\circ</math> and <math>\angle MCA=30^\circ</math>. Prove that the triangle is isosceles.
+
==Solution==
  
 +
Clearly, <math>\angle AMB = 150^\circ</math> and <math>\angle AMC = 110^\circ</math>. Now by the Law of Sines on triangles <math>ABM</math> and <math>ACM</math>, we have <cmath>\frac{AB}{\sin 150^\circ} = \frac{AM}{\sin 20^\circ}</cmath> and <cmath>\frac{AC}{\sin 110^\circ} = \frac{AM}{\sin 30^\circ}.</cmath> Combining these equations gives us <cmath>\frac{AB}{AC} = \frac{\sin 150^\circ \sin 30^\circ}{\sin 20^\circ \sin 110^\circ}.</cmath> Without loss of generality, let <math>AB = \sin 150^\circ \sin 30^\circ = \frac{1}{4}</math> and <math>AC = \sin 20^\circ \sin 110^\circ</math>. Then by the Law of Cosines, we have
  
 +
<cmath>
 +
\begin{align*}
 +
BC^2 &= AB^2 + AC^2 - 2(AB)(BC)\cos\angle BAC\\
 +
&= \frac{1}{16} + \sin^2 20^\circ\sin^2 110^\circ - 2\left(\frac{1}{4}\right)\sin 20^\circ\sin 110^\circ\cos 50^\circ \\
 +
&= \frac{1}{16} + \sin^2 20^\circ \sin^2 110^\circ - \frac{1}{2}\sin 20^\circ\sin 110^\circ\sin 40^\circ \\
 +
&= \frac{1}{16} + \sin^2 20^\circ \sin^2 110^\circ - \sin 20^\circ\sin 110^\circ\sin 20^\circ\cos 20^\circ \\
 +
&= \frac{1}{16}
 +
\end{align*}
 +
</cmath>
  
 +
Thus, <math>AB = BC</math>, our desired conclusion.
  
'''Solution:'''
 
----
 
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 09:25, 1 August 2013

Problem

Let $ABC$ be a triangle, and $M$ an interior point such that $\angle MAB=10^\circ$, $\angle MBA=20^\circ$ , $\angle MAC= 40^\circ$ and $\angle MCA=30^\circ$. Prove that the triangle is isosceles.

Solution

Clearly, $\angle AMB = 150^\circ$ and $\angle AMC = 110^\circ$. Now by the Law of Sines on triangles $ABM$ and $ACM$, we have \[\frac{AB}{\sin 150^\circ} = \frac{AM}{\sin 20^\circ}\] and \[\frac{AC}{\sin 110^\circ} = \frac{AM}{\sin 30^\circ}.\] Combining these equations gives us \[\frac{AB}{AC} = \frac{\sin 150^\circ \sin 30^\circ}{\sin 20^\circ \sin 110^\circ}.\] Without loss of generality, let $AB = \sin 150^\circ \sin 30^\circ = \frac{1}{4}$ and $AC = \sin 20^\circ \sin 110^\circ$. Then by the Law of Cosines, we have

\begin{align*} BC^2 &= AB^2 + AC^2 - 2(AB)(BC)\cos\angle BAC\\ &= \frac{1}{16} + \sin^2 20^\circ\sin^2 110^\circ - 2\left(\frac{1}{4}\right)\sin 20^\circ\sin 110^\circ\cos 50^\circ \\ &= \frac{1}{16} + \sin^2 20^\circ \sin^2 110^\circ - \frac{1}{2}\sin 20^\circ\sin 110^\circ\sin 40^\circ \\ &= \frac{1}{16} + \sin^2 20^\circ \sin^2 110^\circ - \sin 20^\circ\sin 110^\circ\sin 20^\circ\cos 20^\circ \\ &= \frac{1}{16} \end{align*}

Thus, $AB = BC$, our desired conclusion.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png