Difference between revisions of "2006 AMC 10B Problems/Problem 1"

Line 7: Line 7:
 
Since <math>-1</math> raised to an [[odd integer | odd]] [[exponentiation | exponent]] is <math>-1</math> and <math>-1</math> raised to an [[even integer]] exponent is <math>1</math>:  
 
Since <math>-1</math> raised to an [[odd integer | odd]] [[exponentiation | exponent]] is <math>-1</math> and <math>-1</math> raised to an [[even integer]] exponent is <math>1</math>:  
  
<math> (-1)^{1} + (-1)^{2} + ... + (-1)^{2006} = (-1) + (1) + ... + (-1)+(1) = 0 \Longrightarrow C </math>
+
<math> (-1)^{1} + (-1)^{2} + ... + (-1)^{2006} = (-1) + (1) + ... + (-1)+(1) = 0 \Longrightarrow \boxed{C} </math>
  
 
== See Also ==
 
== See Also ==

Revision as of 17:14, 13 February 2016

Problem

What is $(-1)^{1} + (-1)^{2} + ... + (-1)^{2006}$ ?

$\mathrm{(A) \ } -2006\qquad \mathrm{(B) \ } -1\qquad \mathrm{(C) \ } 0\qquad \mathrm{(D) \ } 1\qquad \mathrm{(E) \ } 2006$

Solution

Since $-1$ raised to an odd exponent is $-1$ and $-1$ raised to an even integer exponent is $1$:

$(-1)^{1} + (-1)^{2} + ... + (-1)^{2006} = (-1) + (1) + ... + (-1)+(1) = 0 \Longrightarrow \boxed{C}$

See Also

2006 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png