Difference between revisions of "2013 AMC 10A Problems/Problem 8"

m (Solution: ?)
Line 12: Line 12:
  
  
Factoring out, we get: <math>\frac{2^{2012}(2^2 + 1)}{2^{2012}(2^2-1)} ?</math>
+
Factoring out, we get: <math>\frac{2^{2012}(2^2 + 1)}{2^{2012}(2^2-1)}</math>
 
 
  
 
Cancelling out the <math>2^{2012}</math> from the numerator and denominator, we see that it simplifies to <math>\boxed{\textbf{(C) }\frac{5}{3}}</math>.
 
Cancelling out the <math>2^{2012}</math> from the numerator and denominator, we see that it simplifies to <math>\boxed{\textbf{(C) }\frac{5}{3}}</math>.

Revision as of 12:23, 27 January 2015

Problem

What is the value of $\frac{2^{2014}+2^{2012}}{2^{2014}-2^{2012}} ?$


$\textbf{(A)}\ -1 \qquad\textbf{(B)}\ 1  \qquad\textbf{(C)}\ \frac{5}{3} \qquad\textbf{(D)}\ 2013 \qquad\textbf{(E)}\ 2^{4024}$


Solution

Factoring out, we get: $\frac{2^{2012}(2^2 + 1)}{2^{2012}(2^2-1)}$.

Cancelling out the $2^{2012}$ from the numerator and denominator, we see that it simplifies to $\boxed{\textbf{(C) }\frac{5}{3}}$.

See Also

2013 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2013 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png