Difference between revisions of "2010 AMC 10A Problems/Problem 24"
Armalite46 (talk | contribs) m (→Solution) |
|||
Line 7: | Line 7: | ||
== Solution == | == Solution == | ||
− | We will use the fact that for any integer <math>n</math>, | + | We will use the fact that for any integer <math>n</math>, <cmath>\begin{align*}(5n+1)(5n+2)(5n+3)(5n+4)&=[(5n+4)(5n+1)][(5n+2)(5n+3)]\\ &=(25n^2+25n+4)(25n^2+25n+6)\equiv 4\cdot 6\\ &=24\pmod{25}\equiv -1\pmod{25}.\end{align*}</cmath> |
− | <cmath>\begin{align*}(5n+1)(5n+2)(5n+3)(5n+4)&=[(5n+4)(5n+1)][(5n+2)(5n+3)]\\ | ||
− | &=(25n^2+25n+4)(25n^2+25n+6)\equiv 4\cdot 6\\ | ||
− | &=24\pmod{25}\equiv -1\pmod{25}.\end{align*}</cmath> | ||
− | First, we find that the number of factors of <math>10</math> in <math>90!</math> is equal to <math>\left\lfloor \frac{90}5\right\rfloor+\left\lfloor\frac{90}{25}\right\rfloor=18+3=21</math>. Let <math>N=\frac{90!}{10^{21}}</math>. The <math>n</math> we want is therefore the last two digits of <math>N</math>, or <math>N\pmod{100}</math>. Since there is clearly an excess of factors of 2, we know that <math>N\equiv 0\pmod 4</math>, so it remains to find <math>N\pmod{25}</math>. | + | First, we find that the number of factors of <math>10</math> in <math>90!</math> is equal to <math>\left\lfloor \frac{90}5\right\rfloor+\left\lfloor\frac{90}{25}\right\rfloor=18+3=21</math>. Let <math>N=\frac{90!}{10^{21}}</math>. The <math>n</math> we want is therefore the last two digits of <math>N</math>, or <math>N\pmod{100}</math>. Since there is clearly an excess of factors of 2, we know that <math>N\equiv 0\pmod 4</math>, so it remains to find <math>N\pmod{25}</math>. |
− | If we divide <math>N</math> by <math>5^{21} | + | If we divide <math>N</math> by <math>5^{21}</math> , we can write <math>N</math> as <math>\frac M{2^{21}}</math> where <cmath>M=1\cdot 2\cdot 3\cdot 4\cdot 1\cdot 6\cdot 7\cdot 8\cdot 9\cdot 2\cdots 89\cdot 18,</cmath> where every number in the form <math>(5^a)*n</math> is replaced by <math>n</math>. |
− | <cmath>M=1\cdot 2\cdot 3\cdot 4\cdot 1\cdot 6\cdot 7\cdot 8\cdot 9\cdot 2\cdots 89\cdot 18,</cmath> | ||
− | where | ||
− | The number <math>M</math> can be grouped as follows: | + | The number <math>M</math> can be grouped as follows: |
− | <cmath>\begin{align*}M= &(1\cdot 2\cdot 3\cdot 4)(6\cdot 7\cdot 8\cdot 9)\cdots(86\cdot 87\cdot 88\cdot 89)\\ | + | <cmath>\begin{align*}M= &(1\cdot 2\cdot 3\cdot 4)(6\cdot 7\cdot 8\cdot 9)\cdots(86\cdot 87\cdot 88\cdot 89)\\ &\cdot (1\cdot 2\cdot 3\cdot 4)(6\cdot 7\cdot 8\cdot 9)\cdots (16\cdot 17\cdot 18) \\ &\cdot (1\cdot 2\cdot 3).\end{align*}</cmath> |
− | &\cdot (1\cdot 2\cdot 3\cdot 4)(6\cdot 7\cdot 8\cdot 9)\cdots (16\cdot 17\cdot 18) \\ | ||
− | &\cdot (1\cdot 2\cdot 3).\end{align*}</cmath> | ||
− | + | Hence, we can reduce <math>M</math> to | |
− | <cmath>\begin{align*}M&\equiv(-1)^{18} \cdot (-1)^3(16\cdot 17\cdot 18) \cdot (1\cdot 2\cdot 3) \\ | + | <cmath>\begin{align*}M&\equiv(-1)^{18} \cdot (-1)^3(16\cdot 17\cdot 18) \cdot (1\cdot 2\cdot 3) \\ &= 1\cdot -21\cdot 6\\ &= -1\pmod{25} =24\pmod{25}.\end{align*}</cmath> |
− | &= 1\cdot -21\cdot 6\\ | ||
− | &= -1\pmod{25} =24\pmod{25}.\end{align*}</cmath> | ||
− | Using the fact that <math>2^{10}=1024\equiv -1\pmod{25}</math> | + | Using the fact that <math>2^{10}=1024\equiv -1\pmod{25}</math>,we can deduce that <math>2^{21}\equiv 2\pmod{25}</math>. Therefore <math>N=\frac M{2^{21}}\equiv \frac {24}2\pmod{25}=12\pmod{25}</math>. |
Finally, combining with the fact that <math>N\equiv 0\pmod 4</math> yields <math>n=\boxed{\textbf{(A)}\ 12}</math>. | Finally, combining with the fact that <math>N\equiv 0\pmod 4</math> yields <math>n=\boxed{\textbf{(A)}\ 12}</math>. |
Revision as of 20:07, 3 September 2013
Problem
The number obtained from the last two nonzero digits of is equal to . What is ?
Solution
We will use the fact that for any integer ,
First, we find that the number of factors of in is equal to . Let . The we want is therefore the last two digits of , or . Since there is clearly an excess of factors of 2, we know that , so it remains to find .
If we divide by , we can write as where where every number in the form is replaced by .
The number can be grouped as follows:
Hence, we can reduce to
Using the fact that ,we can deduce that . Therefore .
Finally, combining with the fact that yields .
See also
2010 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.