Difference between revisions of "2004 AMC 10A Problems/Problem 2"
(→Problem) |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | For any three | + | For any three real numbers <math>a</math>, <math>b</math>, and <math>c</math>, with <math>b\neq c</math>, the operation <math>\otimes</math> is defined by: |
− | < | + | <cmath>\otimes(a,b,c)=\frac{a}{b-c}</cmath> |
− | \otimes(a,b,c)=\frac{a}{b-c} | + | What is <math>\otimes(\otimes(1,2,3),\otimes(2,3,1),\otimes(3,1,2))</math>? |
− | </ | ||
− | What is <math>\otimes | ||
<math> \mathrm{(A) \ } -\frac{1}{2}\qquad \mathrm{(B) \ } -\frac{1}{4} \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } \frac{1}{4} \qquad \mathrm{(E) \ } \frac{1}{2} </math> | <math> \mathrm{(A) \ } -\frac{1}{2}\qquad \mathrm{(B) \ } -\frac{1}{4} \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } \frac{1}{4} \qquad \mathrm{(E) \ } \frac{1}{2} </math> |
Revision as of 17:21, 20 July 2014
Problem
For any three real numbers , , and , with , the operation is defined by: What is ?
Solution
See also
2004 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.