Difference between revisions of "2005 AMC 12B Problems/Problem 20"
Arthy00009 (talk | contribs) m (→Solution) |
|||
Line 14: | Line 14: | ||
== Solution == | == Solution == | ||
− | The sum of the set is <math>-7-5-3-2+2+4+6+13=8</math>, so if we could have the sum in each set of parenthesis be <math>4</math> then the minimum value would be <math>2(4^2)=32</math>. Considering the set of four terms containing <math>13</math>, this sum could only be even if it had two or four odd terms. If it had all four odd terms then it would be <math>13-7-5-3=-2</math>, and with two odd terms then its minimum value is <math>13-7+2-2=6</math>, so we cannot achieve two sums of <math>4</math>. The closest we could have to <math>4</math> and <math>4</math> is <math>3</math> and <math>5</math>, which can be achieved through <math>13-7-5+2</math> and <math>6-3-2+4</math>. So the minimum possible value is <math>3^2+5^2=34\Rightarrow\boxed{C}</math>. | + | The sum of the set is <math>-7-5-3-2+2+4+6+13=8</math>, so if we could have the sum in each set of parenthesis be <math>4</math> then the minimum value would be <math>2(4^2)=32</math>. Considering the set of four terms containing <math>13</math>, this sum could only be even if it had two or four odd terms. If it had all four odd terms then it would be <math>13-7-5-3=-2</math>, and with two odd terms then its minimum value is <math>13-7+2-2=6</math>, so we cannot achieve two sums of <math>4</math>. The closest we could have to <math>4</math> and <math>4</math> is <math>3</math> and <math>5</math>, which can be achieved through <math>13-7-5+2</math> and <math>6-3-2+4</math>. So the minimum possible value is <math>3^2+5^2=34\Rightarrow\boxed{\mathrm{C}}</math>. |
== See also == | == See also == | ||
{{AMC12 box|year=2005|ab=B|num-b=19|num-a=21}} | {{AMC12 box|year=2005|ab=B|num-b=19|num-a=21}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 20:23, 21 December 2020
Problem
Let and be distinct elements in the set
What is the minimum possible value of
Solution
The sum of the set is , so if we could have the sum in each set of parenthesis be then the minimum value would be . Considering the set of four terms containing , this sum could only be even if it had two or four odd terms. If it had all four odd terms then it would be , and with two odd terms then its minimum value is , so we cannot achieve two sums of . The closest we could have to and is and , which can be achieved through and . So the minimum possible value is .
See also
2005 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 19 |
Followed by Problem 21 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.