Difference between revisions of "2008 AMC 12A Problems/Problem 25"
(→See Also) |
(→Solution) |
||
Line 19: | Line 19: | ||
Rotating <math>(2,4)</math> clockwise by <math>99 \cdot 30^\circ \equiv 90^\circ</math> yields <math>(4,-2)</math>. A dilation by a factor of <math>\frac{1}{2^{99}}</math> yields the point <math>(a_1,b_1) = \left(\frac{4}{2^{99}}, -\frac{2}{2^{99}} \right) = \left(\frac{1}{2^{97}}, -\frac{1}{2^{98}} \right)</math>. | Rotating <math>(2,4)</math> clockwise by <math>99 \cdot 30^\circ \equiv 90^\circ</math> yields <math>(4,-2)</math>. A dilation by a factor of <math>\frac{1}{2^{99}}</math> yields the point <math>(a_1,b_1) = \left(\frac{4}{2^{99}}, -\frac{2}{2^{99}} \right) = \left(\frac{1}{2^{97}}, -\frac{1}{2^{98}} \right)</math>. | ||
− | Therefore, <math>a_1 + b_1 = \frac{1}{2^{97}} - \frac{1}{2^{98}} = \frac{1}{2^{98}} \Rightarrow D</math>. | + | Therefore, <math>a_1 + b_1 = \frac{1}{2^{97}} - \frac{1}{2^{98}} = \frac{1}{2^{98}} \Rightarrow D</math>. |
+ | |||
+ | Shortcut: no answer has <math>3</math> in the denominator. So the point cannot have orientation <math>(2,4)</math> or <math>(-2,-4)</math>. Also there are no negative answers. Any other non-multiple of <math>90^\circ</math> rotation of <math>30n^\circ</math> would result in the need of radicals. So either it has orientation <math>(4,-2)</math> or <math>(-4,2)</math>. Both answers add up to <math>2</math>. Thus, <math>2/2^99=\boxed{\textbf{(D) }\frac{1}{2^98}</math>. | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2008|ab=A|num-b=24|after=Last question}} | {{AMC12 box|year=2008|ab=A|num-b=24|after=Last question}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 19:39, 13 February 2016
Problem
A sequence , , , of points in the coordinate plane satisfies
for .
Suppose that . What is ?
Solution
This sequence can also be expressed using matrix multiplication as follows:
.
Thus, is formed by rotating counter-clockwise about the origin by and dilating the point's position with respect to the origin by a factor of .
So, starting with and performing the above operations times in reverse yields .
Rotating clockwise by yields . A dilation by a factor of yields the point .
Therefore, .
Shortcut: no answer has in the denominator. So the point cannot have orientation or . Also there are no negative answers. Any other non-multiple of rotation of would result in the need of radicals. So either it has orientation or . Both answers add up to . Thus, $2/2^99=\boxed{\textbf{(D) }\frac{1}{2^98}$ (Error compiling LaTeX. Unknown error_msg).
See Also
2008 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last question |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.