Difference between revisions of "2008 AMC 12A Problems/Problem 13"
(→See also) |
m (→Solution) |
||
Line 5: | Line 5: | ||
<math>\mathrm{(A)}\ \frac{1}{16}\qquad\mathrm{(B)}\ \frac{1}{9}\qquad\mathrm{(C)}\ \frac{1}{8}\qquad\mathrm{(D)}\ \frac{1}{6}\qquad\mathrm{(E)}\ \frac{1}{4}</math> | <math>\mathrm{(A)}\ \frac{1}{16}\qquad\mathrm{(B)}\ \frac{1}{9}\qquad\mathrm{(C)}\ \frac{1}{8}\qquad\mathrm{(D)}\ \frac{1}{6}\qquad\mathrm{(E)}\ \frac{1}{4}</math> | ||
− | == Solution | + | == Solution |
<asy>size(200); | <asy>size(200); | ||
defaultpen(fontsize(10)); | defaultpen(fontsize(10)); |
Revision as of 10:28, 10 June 2019
- The following problem is from both the 2008 AMC 12A #13 and 2008 AMC 10A #16, so both problems redirect to this page.
Problem
Points and lie on a circle centered at , and . A second circle is internally tangent to the first and tangent to both and . What is the ratio of the area of the smaller circle to that of the larger circle?
== Solution
Let be the center of the small circle with radius , and let be the point where the small circle is tangent to . Also, let be the point where the small circle is tangent to the big circle with radius .
Then is a right triangle, and a triangle at that. Therefore, .
Since , we have , or , or .
Then the ratio of areas will be squared, or .
See also
2008 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 12 |
Followed by Problem 14 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2008 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.