Difference between revisions of "2007 AMC 12A Problems/Problem 12"

(See also)
m (See also)
Line 7: Line 7:
 
==Solution==
 
==Solution==
 
The only times when <math>ad-bc</math> is even is when <math>ad</math> and <math>bc</math> are of the same [[parity]]. The chance of <math>ad</math> being odd is <math>\frac 12 \cdot \frac 12 = \frac 14</math>, so it has a <math>\frac 34</math> probability of being even. Therefore, the probability that <math>ad-bc</math> will be even is <math>\left(\frac 14\right)^2+\left(\frac 34\right)^2=\frac 58\ \mathrm{(E)}</math>.
 
The only times when <math>ad-bc</math> is even is when <math>ad</math> and <math>bc</math> are of the same [[parity]]. The chance of <math>ad</math> being odd is <math>\frac 12 \cdot \frac 12 = \frac 14</math>, so it has a <math>\frac 34</math> probability of being even. Therefore, the probability that <math>ad-bc</math> will be even is <math>\left(\frac 14\right)^2+\left(\frac 34\right)^2=\frac 58\ \mathrm{(E)}</math>.
 
==See also==
 
{{AMC12 box|year=2007|ab=A|num-b=11|num-a=13}}
 
{{AMC10 box|year=2007|ab=A|num-b=15|num-a=17}}
 
 
[[Category:Introductory Combinatorics Problems]]
 
{{MAA Notice}}
 

Revision as of 18:14, 28 May 2017

The following problem is from both the 2007 AMC 12A #12 and 2007 AMC 10A #16, so both problems redirect to this page.

Problem

Integers $a, b, c,$ and $d$, not necessarily distinct, are chosen independently and at random from 0 to 2007, inclusive. What is the probability that $ad-bc$ is even?

$\mathrm{(A)}\ \frac 38\qquad \mathrm{(B)}\ \frac 7{16}\qquad \mathrm{(C)}\ \frac 12\qquad \mathrm{(D)}\ \frac 9{16}\qquad \mathrm{(E)}\ \frac 58$

Solution

The only times when $ad-bc$ is even is when $ad$ and $bc$ are of the same parity. The chance of $ad$ being odd is $\frac 12 \cdot \frac 12 = \frac 14$, so it has a $\frac 34$ probability of being even. Therefore, the probability that $ad-bc$ will be even is $\left(\frac 14\right)^2+\left(\frac 34\right)^2=\frac 58\ \mathrm{(E)}$.