Difference between revisions of "2005 AMC 12A Problems/Problem 15"

(See also)
(Solution 3 (using power of a point) added)
Line 50: Line 50:
  
 
<math>O</math> is midpoint of <math>DE \Rightarrow</math> Area of <math>\triangle DCE = 2 \cdot</math> Area of <math>\triangle DCO = 2 \cdot (\frac{1}{6} \cdot</math> Area of <math>\triangle ABD) = \frac{1}{3} \cdot</math> Area of <math>\triangle ABD \Longrightarrow \mathrm{(C)}</math>.
 
<math>O</math> is midpoint of <math>DE \Rightarrow</math> Area of <math>\triangle DCE = 2 \cdot</math> Area of <math>\triangle DCO = 2 \cdot (\frac{1}{6} \cdot</math> Area of <math>\triangle ABD) = \frac{1}{3} \cdot</math> Area of <math>\triangle ABD \Longrightarrow \mathrm{(C)}</math>.
 +
 +
===Solution 3===
 +
 +
Let <math>r</math> be the radius of the circle. Note that <math>AC+BC = 2r</math> so <math>AC = \frac{2}{3}r</math>.
 +
 +
By [[Power of a Point Theorem]], <math>CD^2= AC \cdot BC = 2\cdot AC^2</math>, and thus <math>CD = \sqrt{2} \cdot AC = \frac{2\sqrt{2}}{3}r</math>
 +
 +
Then the area of <math>\triangle ABD</math> is <math>\frac{1}{2} AB \cdot CD = \frac{2\sqrt{2}}{3}r^2</math>. Similarly, the area of <math>\triangle DCE</math> is <math>\frac{1}{2}(r-AC) \cdot 2 \cdot CD = \frac{2\sqrt{2}}{9}r^2</math>, so the desired ratio is <math>\frac{\frac{2\sqrt{2}}{9}r^2}{\frac{2\sqrt{2}}{3}r^2} = \frac{1}{3} \Longrightarrow \mathrm{(C)}</math>
  
 
== See also ==
 
== See also ==

Revision as of 15:05, 20 March 2015

Problem

Let $\overline{AB}$ be a diameter of a circle and $C$ be a point on $\overline{AB}$ with $2 \cdot AC = BC$. Let $D$ and $E$ be points on the circle such that $\overline{DC} \perp \overline{AB}$ and $\overline{DE}$ is a second diameter. What is the ratio of the area of $\triangle DCE$ to the area of $\triangle ABD$?

[asy] unitsize(2.5cm); defaultpen(fontsize(10pt)+linewidth(.8pt)); dotfactor=3; pair O=(0,0), C=(-1/3.0), B=(1,0), A=(-1,0); pair D=dir(aCos(C.x)), E=(-D.x,-D.y); draw(A--B--D--cycle); draw(D--E--C); draw(unitcircle,white); drawline(D,C); dot(O); clip(unitcircle); draw(unitcircle); label("$E$",E,SSE); label("$B$",B,E); label("$A$",A,W); label("$D$",D,NNW); label("$C$",C,SW); draw(rightanglemark(D,C,B,2));[/asy]

$(\text {A}) \ \frac {1}{6} \qquad (\text {B}) \ \frac {1}{4} \qquad (\text {C})\ \frac {1}{3} \qquad (\text {D}) \ \frac {1}{2} \qquad (\text {E})\ \frac {2}{3}$

Solution

Solution 1

Notice that the bases of both triangles are diameters of the circle. Hence the ratio of the areas is just the ratio of the heights of the triangles, or $\frac{CD}{CF}$ ($F$ is the foot of the perpendicular from $C$ to $DE$).

Call the radius $r$. Then $AC = \frac 13(2r) = \frac 23r$, $CO = \frac 13r$. Using the Pythagorean Theorem in $\triangle OCD$, we get $\frac{1}{3}r^2 + CD^2 = r^2 \Longrightarrow CD = \frac{2\sqrt{2}}3r$.

Now we have to find $CF$. Notice $\triangle OCD \sim \triangle OFC$, so we can write the proportion:

$\frac{OF}{OC} = \frac{OC}{OD}$
$\frac{OF}{\frac{1}{3}r} = \frac{\frac{1}{3}r}{r}$
$OF = \frac 19r$

By the Pythagorean Theorem in $\triangle OFC$, we have $\left(\frac{1}{9}r\right)^2 + CF^2 = \left(\frac{1}{3}r\right)^2 \Longrightarrow CF = \sqrt{\frac{8}{81}r^2} = \frac{2\sqrt{2}}{9}r$.

Our answer is $\frac{CD}{CF} = \frac{\frac{2\sqrt{2}}{3}r}{\frac{2\sqrt{2}}{9}r} = \frac 13 \Longrightarrow \mathrm{(C)}$.


Solution 2

Let the centre of the circle be $O$.

Note that $2 \cdot AC = BC \Rightarrow 3 \cdot AC = AB$.

$O$ is midpoint of $AB \Rightarrow \frac{3}{2}AC = AO \Rightarrow CO = \frac{1}{3}AO \Rightarrow CO = \frac{1}{6} AB$.

$O$ is midpoint of $DE \Rightarrow$ Area of $\triangle DCE = 2 \cdot$ Area of $\triangle DCO = 2 \cdot (\frac{1}{6} \cdot$ Area of $\triangle ABD) = \frac{1}{3} \cdot$ Area of $\triangle ABD \Longrightarrow \mathrm{(C)}$.

Solution 3

Let $r$ be the radius of the circle. Note that $AC+BC = 2r$ so $AC = \frac{2}{3}r$.

By Power of a Point Theorem, $CD^2= AC \cdot BC = 2\cdot AC^2$, and thus $CD = \sqrt{2} \cdot AC = \frac{2\sqrt{2}}{3}r$

Then the area of $\triangle ABD$ is $\frac{1}{2} AB \cdot CD = \frac{2\sqrt{2}}{3}r^2$. Similarly, the area of $\triangle DCE$ is $\frac{1}{2}(r-AC) \cdot 2 \cdot CD = \frac{2\sqrt{2}}{9}r^2$, so the desired ratio is $\frac{\frac{2\sqrt{2}}{9}r^2}{\frac{2\sqrt{2}}{3}r^2} = \frac{1}{3} \Longrightarrow \mathrm{(C)}$

See also

2005 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png