Difference between revisions of "2012 USAJMO Problems"
m (→Problem 4) |
|||
Line 18: | Line 18: | ||
===Problem 4=== | ===Problem 4=== | ||
− | Let <math>\alpha</math> be an irrational number with <math>0 < \alpha < 1</math>, and draw a circle in the plane whose circumference has length 1. Given any integer <math>n \ge 3</math>, define a sequence of points <math>P_1</math>, <math>P_2</math>, <math>\dots</math>, <math>P_n</math> as follows. First select any point <math>P_1</math> on the circle, and for <math>2 \le k \le n</math> define <math>P_k</math> as the point on the circle for which the length of arc <math>P_{k - 1} P_k</math> is <math>\alpha</math>, when travelling counterclockwise around the circle from <math>P_{k - 1}</math> to <math>P_k</math>. | + | Let <math>\alpha</math> be an irrational number with <math>0 < \alpha < 1</math>, and draw a circle in the plane whose circumference has length 1. Given any integer <math>n \ge 3</math>, define a sequence of points <math>P_1</math>, <math>P_2</math>, <math>\dots</math>, <math>P_n</math> as follows. First select any point <math>P_1</math> on the circle, and for <math>2 \le k \le n</math> define <math>P_k</math> as the point on the circle for which the length of arc <math>P_{k - 1} P_k</math> is <math>\alpha</math>, when travelling counterclockwise around the circle from <math>P_{k - 1}</math> to <math>P_k</math>. Suppose that <math>P_a</math> and <math>P_b</math> are the nearest adjacent points on either side of <math>P_n</math>. Prove that <math>a + b \le n</math>. |
[[2012 USAJMO Problems/Problem 4|Solution]] | [[2012 USAJMO Problems/Problem 4|Solution]] | ||
+ | |||
===Problem 5=== | ===Problem 5=== | ||
Revision as of 16:06, 13 April 2014
Contents
Day 1
Problem 1
Given a triangle , let
and
be points on segments
and
, respectively, such that
. Let
and
be distinct points on segment
such that
lies between
and
,
, and
. Prove that
,
,
,
are concyclic (in other words, these four points lie on a circle).
Problem 2
Find all integers such that among any
positive real numbers
,
,
,
with
there exist three that are the side lengths of an acute triangle.
Problem 3
Let ,
,
be positive real numbers. Prove that
Day 2
Problem 4
Let be an irrational number with
, and draw a circle in the plane whose circumference has length 1. Given any integer
, define a sequence of points
,
,
,
as follows. First select any point
on the circle, and for
define
as the point on the circle for which the length of arc
is
, when travelling counterclockwise around the circle from
to
. Suppose that
and
are the nearest adjacent points on either side of
. Prove that
.
Problem 5
For distinct positive integers ,
, define
to be the number of integers
with
such that the remainder when
divided by 2012 is greater than that of
divided by 2012. Let
be the minimum value of
, where
and
range over all pairs of distinct positive integers less than 2012. Determine
.
Problem 6
Let be a point in the plane of triangle
, and
a line passing through
. Let
,
,
be the points where the reflections of lines
,
,
with respect to
intersect lines
,
,
, respectively. Prove that
,
,
are collinear.
Solution
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.