Difference between revisions of "2011 USAJMO Problems/Problem 3"
(→Solution) |
m (→Solution) |
||
Line 7: | Line 7: | ||
Note that all the points <math>P=(a,a^2)</math> belong to the parabola <math>y=x^2</math> which we will denote <math>p</math>. This parabola has a focus <math>F=\left(0,\frac{1}{4}\right)</math> and directrix <math>y=-\frac{1}{4}</math> which we will denote <math>d</math>. We will prove that the desired locus is <math>d</math>. | Note that all the points <math>P=(a,a^2)</math> belong to the parabola <math>y=x^2</math> which we will denote <math>p</math>. This parabola has a focus <math>F=\left(0,\frac{1}{4}\right)</math> and directrix <math>y=-\frac{1}{4}</math> which we will denote <math>d</math>. We will prove that the desired locus is <math>d</math>. | ||
− | First note that for any point <math>P</math> on <math>p</math>, the line <math>\ell(P)</math> is the tangent line to <math>p</math> at <math>P</math>. This is because <math>\ell(P)</math> contains <math>P</math> and because <math>\frac{d}{dx} x^2=2x</math>. If you don't like calculus, you can also verify that <math>\ell(P)</math> has equation <math>y=2a(x-a)+a^2</math> and does not intersect <math>y=x^2</math> at any point besides <math>P</math>. Now for any point <math>P</math> on <math>p</math> let <math>P'</math> be the foot of the perpendicular from <math>P</math> onto <math>d</math>. Then by the definition of parabolas, <math>PP'=PF</math>. Let <math>q</math> be the perpendicular bisector of <math>\oveline{P'F}</math>. Since <math>PP'=PF</math>, <math>q</math> passes through <math>P</math>. Suppose <math>K</math> is any other point on <math>q</math> and let <math>K'</math> be the foot of the perpendicular from <math>K</math> to <math>d</math>. Then in right <math>\Delta KK'P'</math>, <math>KK'</math> is a leg and so <math>KK'<KP'=KF</math>. Therefore <math>K</math> cannot be on <math>p</math>. This implies that <math>q</math> is exactly the tangent line to <math>p</math> at <math>P</math>, that is <math>q=\ell(P)</math>. So we have proved Lemma 1: If <math>P</math> is a point on <math>p</math> then <math>\ell(P)</math> is the perpendicular bisector of <math>\overline{P'F}</math>. | + | First note that for any point <math>P</math> on <math>p</math>, the line <math>\ell(P)</math> is the tangent line to <math>p</math> at <math>P</math>. This is because <math>\ell(P)</math> contains <math>P</math> and because <math>[\frac{d}{dx}] x^2=2x</math>. If you don't like calculus, you can also verify that <math>\ell(P)</math> has equation <math>y=2a(x-a)+a^2</math> and does not intersect <math>y=x^2</math> at any point besides <math>P</math>. Now for any point <math>P</math> on <math>p</math> let <math>P'</math> be the foot of the perpendicular from <math>P</math> onto <math>d</math>. Then by the definition of parabolas, <math>PP'=PF</math>. Let <math>q</math> be the perpendicular bisector of <math>\oveline{P'F}</math>. Since <math>PP'=PF</math>, <math>q</math> passes through <math>P</math>. Suppose <math>K</math> is any other point on <math>q</math> and let <math>K'</math> be the foot of the perpendicular from <math>K</math> to <math>d</math>. Then in right <math>\Delta KK'P'</math>, <math>KK'</math> is a leg and so <math>KK'<KP'=KF</math>. Therefore <math>K</math> cannot be on <math>p</math>. This implies that <math>q</math> is exactly the tangent line to <math>p</math> at <math>P</math>, that is <math>q=\ell(P)</math>. So we have proved Lemma 1: If <math>P</math> is a point on <math>p</math> then <math>\ell(P)</math> is the perpendicular bisector of <math>\overline{P'F}</math>. |
We need another lemma before we proceed. Lemma 2: If <math>F</math> is on the circumcircle of <math>\Delta XYZ</math> with orthocenter <math>H</math>, then the reflections of <math>F</math> across <math>\overleftrightarrow{XY}</math>, <math>\overleftrightarrow{XZ}</math>, and <math>\overleftrightarrow{YZ}</math> are collinear with <math>H</math>. | We need another lemma before we proceed. Lemma 2: If <math>F</math> is on the circumcircle of <math>\Delta XYZ</math> with orthocenter <math>H</math>, then the reflections of <math>F</math> across <math>\overleftrightarrow{XY}</math>, <math>\overleftrightarrow{XZ}</math>, and <math>\overleftrightarrow{YZ}</math> are collinear with <math>H</math>. |
Revision as of 09:27, 2 June 2013
Problem
For a point in the coordinate plane, let denote the line passing through with slope . Consider the set of triangles with vertices of the form , , , such that the intersections of the lines , , form an equilateral triangle . Find the locus of the center of as ranges over all such triangles.
Solution
Note that all the points belong to the parabola which we will denote . This parabola has a focus and directrix which we will denote . We will prove that the desired locus is .
First note that for any point on , the line is the tangent line to at . This is because contains and because . If you don't like calculus, you can also verify that has equation and does not intersect at any point besides . Now for any point on let be the foot of the perpendicular from onto . Then by the definition of parabolas, . Let be the perpendicular bisector of $\oveline{P'F}$ (Error compiling LaTeX. Unknown error_msg). Since , passes through . Suppose is any other point on and let be the foot of the perpendicular from to . Then in right , is a leg and so . Therefore cannot be on . This implies that is exactly the tangent line to at , that is . So we have proved Lemma 1: If is a point on then is the perpendicular bisector of .
We need another lemma before we proceed. Lemma 2: If is on the circumcircle of with orthocenter , then the reflections of across , , and are collinear with .
Proof of Lemma 2: Say the reflections of and across are and , and the reflections of and across are and . Then we angle chase where is the measure of minor arc on the circumcircle of . This implies that is on the circumcircle of , and similarly is on the circumcircle of . Therefore , and . So . Since , , and are collinear it follows that , and are collinear. Similarly, the reflection of over also lies on this line, and so the claim is proved.
Now suppose , , and are three points of and let , , and . Also let , , and be the midpoints of , , and respectively. Then since and , it follows that , , and are collinear. By Lemma 1, we know that , , and are the feet of the altitudes from to , , and . Therefore by the Simson Line Theorem, is on the circumcircle of . If is the orthocenter of , then by Lemma 2, it follows that is on . It follows that the locus described in the problem is a subset of .
Since we claim that the locus described in the problem is , we still need to show that for any choice of on there exists an equilateral triangle with center such that the lines containing the sides of the triangle are tangent to . So suppose is any point on and let the circle centered at through be . Then suppose is one of the intersections of with . Let , and construct the ray through on the same halfplane of as that makes an angle of with . Say this ray intersects in a point besides , and let be the perpendicular bisector of . Since and , we have . By the inscribed angles theorem, it follows that . Also since and are both radii, is isosceles and . Let be the reflection of across . Then , and so . It follows that is on , which means is the perpendicular bisector of .
Let intersect in points and and let be the point diametrically opposite to on . Also let intersect at . Then . Therefore is a right triangle and so . So and by the inscribed angles theorem, . Since it follows that is and equilateral triangle with center .
By Lemma 2, it follows that the reflections of across and , call them and , lie on . Let the intersection of and the perpendicular to through be , the intersection of $\overleftrightarriw{XY}$ (Error compiling LaTeX. Unknown error_msg) and the perpendicular to through be , and the intersection of and the perpendicular to through be . Then by the definitions of , , and it follows that for and so , , and are on . By lemma 1, , , and . Therefore the intersections of , , and form an equilateral triangle with center , which finishes the proof. --Killbilledtoucan