Difference between revisions of "2005 AMC 10A Problems/Problem 15"
(→Solution 2) |
(→Solution) |
||
Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
+ | === Solution 1 === | ||
<math> 3! \cdot 5! \cdot 7! = (3\cdot2\cdot1) \cdot (5\cdot4\cdot3\cdot2\cdot1) \cdot (7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1) = 2^{8}\cdot3^{4}\cdot5^{2}\cdot7^{1}</math> | <math> 3! \cdot 5! \cdot 7! = (3\cdot2\cdot1) \cdot (5\cdot4\cdot3\cdot2\cdot1) \cdot (7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1) = 2^{8}\cdot3^{4}\cdot5^{2}\cdot7^{1}</math> | ||
Revision as of 21:58, 27 May 2013
Problem
How many positive cubes divide ?
Solution
Solution 1
Therefore, a perfect cube that divides must be in the form where , , , and are nonnegative multiples of that are less than or equal to , , and , respectively.
So:
( posibilities)
( posibilities)
( posibility)
( posibility)
So the number of perfect cubes that divide is
Solution 2
If you factor You get
There are 3 ways for the first factor of a cube: , , and . And the second ways are: , and .
Answer :