Difference between revisions of "Majorization"

m
m
Line 1: Line 1:
A [[sequence]] <math>\displaystyle A=a_1,a_2,\cdots,a_n</math> is said to '''majorize''' a sequence <math>\displaystyle B=b_1,b_2,\cdots,b_n</math> [[iff]] all of the following are true:  
+
A [[finite]] [[sequence]] of [[real number]]s <math>\displaystyle A=a_1,a_2,\cdots,a_n</math> is said to '''majorize''' a sequence <math>\displaystyle B=b_1,b_2,\cdots,b_n</math> if and only if all of the following are true:  
  
 
<math>\displaystyle a_1\geq b_1</math>  
 
<math>\displaystyle a_1\geq b_1</math>  

Revision as of 09:19, 8 September 2006

A finite sequence of real numbers $\displaystyle A=a_1,a_2,\cdots,a_n$ is said to majorize a sequence $\displaystyle B=b_1,b_2,\cdots,b_n$ if and only if all of the following are true:

$\displaystyle a_1\geq b_1$

$\displaystyle a_1+a_2\geq b_1+b_2$

$\displaystyle \vdots$

$\displaystyle a_1+a_2+\cdots+a_{n-1}\geq b_1+b_2+\cdots+b_{n-1}$

$\displaystyle a_1+a_2+\cdots+a_n=b_1+b_2+\cdots+b_n$

This article is a stub. Help us out by expanding it.