Difference between revisions of "1991 AHSME Problems/Problem 1"

(Created page with "If for any three distinct numbers <math>a</math>, <math>b</math>, and <math>c</math> we define <math>f(a,b,c)=\frac{c+a}{c-b}</math>, then <math>f(1,-2,-3)</math> is (A) <math>-...")
 
Line 2: Line 2:
  
 
(A) <math>-2</math>  (B) <math>-\frac{2}{5}</math>  (C) <math>-\frac{1}{4}</math>  (D) <math>\frac{2}{5}</math>  (E) <math>2</math>
 
(A) <math>-2</math>  (B) <math>-\frac{2}{5}</math>  (C) <math>-\frac{1}{4}</math>  (D) <math>\frac{2}{5}</math>  (E) <math>2</math>
 +
{{MAA Notice}}

Revision as of 12:52, 5 July 2013

If for any three distinct numbers $a$, $b$, and $c$ we define $f(a,b,c)=\frac{c+a}{c-b}$, then $f(1,-2,-3)$ is

(A) $-2$ (B) $-\frac{2}{5}$ (C) $-\frac{1}{4}$ (D) $\frac{2}{5}$ (E) $2$ The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png