Difference between revisions of "2013 AMC 10B Problems/Problem 16"
Turkeybob777 (talk | contribs) |
(→Solution 2) |
||
Line 9: | Line 9: | ||
==Solution 2== | ==Solution 2== | ||
− | Note that triangle <math>DPE</math> is a right triangle, and that the four angles that have point <math>P</math> are all right angles. Using the fact that the centroid (<math>P</math>) divides each median in a <math>2:1</math> ratio, <math>AP=4</math> and <math>CP=3</math>. Quadrilateral <math>AEDC</math> is now just four right triangles. The area is <math>\frac{4\cdot | + | Note that triangle <math>DPE</math> is a right triangle, and that the four angles that have point <math>P</math> are all right angles. Using the fact that the centroid (<math>P</math>) divides each median in a <math>2:1</math> ratio, <math>AP=4</math> and <math>CP=3</math>. Quadrilateral <math>AEDC</math> is now just four right triangles. The area is <math>\frac{4\cdot 1.5+4\cdot 3+3\cdot 2+2\cdot 1.5}{2}=\boxed{\textbf{(B)} 13.5}</math> |
Revision as of 07:01, 22 February 2013
Problem
In triangle , medians and intersect at , , , and . What is the area of ?
Solution
Let us use mass points: Assign mass . Thus, because is the midpoint of , also has a mass of . Similarly, has a mass of . and each have a mass of because they are between and and and respectively. Note that the mass of is twice the mass of , so AP must be twice as long as . PD has length , so has length and has length . Similarly, is twice and , so and . Now note that triangle is a right triangle with the right angle . This means that the quadrilateral is a kite. The area of a kite is half the product of the diagonals, and . Recall that they are and respectively, so the area of is
Solution 2
Note that triangle is a right triangle, and that the four angles that have point are all right angles. Using the fact that the centroid () divides each median in a ratio, and . Quadrilateral is now just four right triangles. The area is