Difference between revisions of "2012 AMC 10B Problems/Problem 3"
RainbowsHurt (talk | contribs) (→Solution) |
|||
Line 8: | Line 8: | ||
The line <math>y = 2000</math> is a horizontal line located <math>12</math> units beneath the point <math>(1000, 2012)</math>. When a point is reflected about a horizontal line, only the <math>y</math> - coordinate will change. The <math>x</math> - coordinate remains the same. Since the <math>y</math>-coordinate of the point is <math>12</math> units above the line of reflection, the new <math>y</math> - coordinate will be <math>2000 - 12 = 1988</math>. Thus, the coordinates of the reflected point are <math>(1000, 1988)</math>. <math>\boxed{\textbf{(B)}}</math> | The line <math>y = 2000</math> is a horizontal line located <math>12</math> units beneath the point <math>(1000, 2012)</math>. When a point is reflected about a horizontal line, only the <math>y</math> - coordinate will change. The <math>x</math> - coordinate remains the same. Since the <math>y</math>-coordinate of the point is <math>12</math> units above the line of reflection, the new <math>y</math> - coordinate will be <math>2000 - 12 = 1988</math>. Thus, the coordinates of the reflected point are <math>(1000, 1988)</math>. <math>\boxed{\textbf{(B)}}</math> | ||
+ | {{MAA Notice}} |
Revision as of 12:14, 4 July 2013
Problem
The point in the -plane with coordinates (1000, 2012) is reflected across the line . What are the coordinates of the reflected point?
Solution
The line is a horizontal line located units beneath the point . When a point is reflected about a horizontal line, only the - coordinate will change. The - coordinate remains the same. Since the -coordinate of the point is units above the line of reflection, the new - coordinate will be . Thus, the coordinates of the reflected point are . The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.