Difference between revisions of "2013 AMC 10A Problems/Problem 14"
Countingkg (talk | contribs) m |
(→Solution) |
||
Line 9: | Line 9: | ||
{{AMC10 box|year=2013|ab=A|num-b=13|num-a=15}} | {{AMC10 box|year=2013|ab=A|num-b=13|num-a=15}} | ||
+ | {{MAA Notice}} |
Revision as of 11:07, 4 July 2013
A solid cube of side length is removed from each corner of a solid cube of side length . How many edges does the remaining solid have?
Solution
We can use Euler's polyhedron formula that says that . We know that there are originally faces on the cube, and each corner cube creates more. . In addition, each cube creates new vertices while taking away the original , yielding vertices. Thus , so
2013 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.