Difference between revisions of "2013 AMC 10A Problems/Problem 20"

Line 7: Line 7:
  
 
==Solution==
 
==Solution==
 +
 +
First, we need to see what this looks like.  Below is a diagram.
 +
 +
<asy>
 +
size(200);
 +
defaultpen(linewidth(0.8));
 +
path square=shift((-.5,-.5))*unitsquare,square2=rotate(45)*square;
 +
fill(square^^square2,grey);
 +
for(int i=0;i<=3;i=i+1)
 +
{
 +
path arcrot=arc(origin,sqrt(2)/2,45+90*i,90*(i+1));
 +
draw(arcrot);
 +
fill(arcrot--((sqrt(2)-1)/(2*sqrt(2)),0)--cycle,grey);
 +
draw(arc(origin,sqrt(2)/2+1/8,50+90*i,90*(i+1)-10),EndArrow);
 +
}
 +
draw(square^^square2);</asy>
 +
 +
We see that we have four quarter circles with radius <math>\frac{1}{2}</math> and four triangles (split the triangles in the above picture in half).  The former each have area <math>\frac{\pi}{16}</math>.  Thus, their total area is <math>\frac{\pi}{4}</math>.
 +
  
 
==See Also==
 
==See Also==
  
 
{{AMC10 box|year=2013|ab=A|num-b=19|num-a=21}}
 
{{AMC10 box|year=2013|ab=A|num-b=19|num-a=21}}

Revision as of 12:41, 8 February 2013

Problem

A unit square is rotated $45^\circ$ about its center. What is the area of the region swept out by the interior of the square?


$\textbf{(A)}\ 1 - \frac{\sqrt2}{2} + \frac{\pi}{4}\qquad\textbf{(B)}\ \frac{1}{2} + \frac{\pi}{4} \qquad\textbf{(C)}\ 2 - \sqrt2 + \frac{\pi}{4}\qquad\textbf{(D)}\ \frac{\sqrt2}{2} + \frac{\pi}{4} \qquad\textbf{(E)}\ 1 + \frac{\sqrt2}{4} + \frac{\pi}{8}$

Solution

First, we need to see what this looks like. Below is a diagram.

[asy] size(200); defaultpen(linewidth(0.8)); path square=shift((-.5,-.5))*unitsquare,square2=rotate(45)*square; fill(square^^square2,grey); for(int i=0;i<=3;i=i+1) { path arcrot=arc(origin,sqrt(2)/2,45+90*i,90*(i+1)); draw(arcrot); fill(arcrot--((sqrt(2)-1)/(2*sqrt(2)),0)--cycle,grey); draw(arc(origin,sqrt(2)/2+1/8,50+90*i,90*(i+1)-10),EndArrow); } draw(square^^square2);[/asy]

We see that we have four quarter circles with radius $\frac{1}{2}$ and four triangles (split the triangles in the above picture in half). The former each have area $\frac{\pi}{16}$. Thus, their total area is $\frac{\pi}{4}$.


See Also

2013 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions