Difference between revisions of "2013 AMC 12A Problems/Problem 14"
Line 1: | Line 1: | ||
+ | == Problem== | ||
+ | |||
+ | The sequence | ||
+ | |||
+ | <math>\log_{12}{162}</math>, <math>\log_{12}{x}</math>, <math>\log_{12}{y}</math>, <math>\log_{12}{z}</math>, <math>\log_{12}{1250}</math> | ||
+ | |||
+ | is an arithmetic progression. What is <math>x</math>? | ||
+ | |||
+ | <math> \textbf{(A)} \ 125\sqrt{3} \qquad \textbf{(B)} \ 270 \qquad \textbf{(C)} \ 162\sqrt{5} \qquad \textbf{(D)} \ 434 \qquad \textbf{(E)} \ 225\sqrt{6}</math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
Since the sequence is arithmetic, | Since the sequence is arithmetic, | ||
Line 17: | Line 29: | ||
<math>x</math> = <math>(162)</math><math>(1250/162)^{1/4}</math> = <math>(162)</math><math>(625/81)^{1/4}</math> = <math>(162)(5/3)</math> = <math>270</math>, which is <math>B</math> | <math>x</math> = <math>(162)</math><math>(1250/162)^{1/4}</math> = <math>(162)</math><math>(625/81)^{1/4}</math> = <math>(162)(5/3)</math> = <math>270</math>, which is <math>B</math> | ||
+ | |||
+ | == See also == | ||
+ | {{AMC12 box|year=2013|ab=A|num-b=13|num-a=15}} |
Revision as of 17:41, 22 February 2013
Problem
The sequence
, , , ,
is an arithmetic progression. What is ?
Solution
Since the sequence is arithmetic,
+ = , where is the common difference.
Therefore,
= - = , and
= () =
Now that we found , we just add it to the first term to find :
+ =
= = = = , which is
See also
2013 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 13 |
Followed by Problem 15 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |