Difference between revisions of "2013 AMC 12A Problems/Problem 14"
Line 8: | Line 8: | ||
<math>4d</math> = <math>\log_{12}{1250}</math> - <math>\log_{12}{162}</math> = <math>\log_{12}{(1250/162)}</math>, and | <math>4d</math> = <math>\log_{12}{1250}</math> - <math>\log_{12}{162}</math> = <math>\log_{12}{(1250/162)}</math>, and | ||
− | <math>d</math> = | + | <math>d</math> = <math>\frac{1}{4}</math>(<math>\log_{12}{(1250/162)}</math>) = <math>\log_{12}{(1250/162)^{1/4}}</math> |
Line 16: | Line 16: | ||
<math>\log_{12}{162}</math> + <math>\log_{12}{(1250/162)^{1/4}}</math> = <math>\log_{12}{((162)(1250/162)^{1/4})}</math> | <math>\log_{12}{162}</math> + <math>\log_{12}{(1250/162)^{1/4}}</math> = <math>\log_{12}{((162)(1250/162)^{1/4})}</math> | ||
− | <math>x</math> = (162)<math>(1250/162)^{1/4}</math> = (162)<math>(625/81)^{1/4}</math> = <math>(162)(5/3)</math> = <math>270</math>, which is <math>B</math> | + | <math>x</math> = <math>(162)</math><math>(1250/162)^{1/4}</math> = <math>(162)</math><math>(625/81)^{1/4}</math> = <math>(162)(5/3)</math> = <math>270</math>, which is <math>B</math> |
Revision as of 22:49, 6 February 2013
Since the sequence is arithmetic,
+ = , where is the common difference.
Therefore,
= - = , and
= () =
Now that we found , we just add it to the first term to find :
+ =
= = = = , which is