Difference between revisions of "2012 AMC 8 Problems/Problem 4"

Line 1: Line 1:
 
Peter's family ordered a 12-slice pizza for dinner. Peter ate one slice and shared another slice equally with his brother Paul. What fraction of the pizza did Peter eat?
 
Peter's family ordered a 12-slice pizza for dinner. Peter ate one slice and shared another slice equally with his brother Paul. What fraction of the pizza did Peter eat?
  
<math> \textbf{(A)}\hspace{.05in}\frac{1}{24}\qquad\textbf{(B)}\hspace{.05in}\frac{1}{12}\qquad\textbf{(C)}\hspace{.05in}\frac{1}8\qquad\textbf{(D)}\hspace{.05in}\frac{1}6\qquad\textbf{(E)}\hspace{.05in}\frac{1}4 </math>
+
<math> \textbf{(A)}\hspace{.05in}\frac{1}{24}\qquad\textbf{(B)}\hspace{.05in}\frac{1}{12}\qquad\textbf{(C)}\hspace{.05in}\frac{1}{8}\qquad\textbf{(D)}\hspace{.05in}\frac{1}{6}\qquad\textbf{(E)}\hspace{.05in}\frac{1}{4} </math>
 +
 
 +
==Solution==
 +
Peter ate <math>1 + \frac{1}{2} = \frac{3}{2}</math> slices. The pizza has <math> 12 </math> slices total. Taking the ratio of the amount of slices Peter ate to the amount of slices in the pizza, we find that Peter ate <math>\boxed{\textbf{(C)}\ \frac{1}{8}}</math> of the pizza.
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2012|num-b=3|num-a=5}}
 
{{AMC8 box|year=2012|num-b=3|num-a=5}}

Revision as of 09:57, 24 November 2012

Peter's family ordered a 12-slice pizza for dinner. Peter ate one slice and shared another slice equally with his brother Paul. What fraction of the pizza did Peter eat?

$\textbf{(A)}\hspace{.05in}\frac{1}{24}\qquad\textbf{(B)}\hspace{.05in}\frac{1}{12}\qquad\textbf{(C)}\hspace{.05in}\frac{1}{8}\qquad\textbf{(D)}\hspace{.05in}\frac{1}{6}\qquad\textbf{(E)}\hspace{.05in}\frac{1}{4}$

Solution

Peter ate $1 + \frac{1}{2} = \frac{3}{2}$ slices. The pizza has $12$ slices total. Taking the ratio of the amount of slices Peter ate to the amount of slices in the pizza, we find that Peter ate $\boxed{\textbf{(C)}\ \frac{1}{8}}$ of the pizza.

See Also

2012 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions